
Development of Cracking Condition Assessment System for
Concrete Bridge Decks Using Image Processing Techniques

ALDOT Project Number: 930-930

Submitted to:
Alabama Department of Transportation

1409 Coliseum Boulevard
Montgomery, Alabama 36110

Prepared by:

Shanglian Zhou
Wei Song, Ph.D.

Department of Civil, Construction, and Environmental Engineering,

College of Engineering,
The University of Alabama

December 31, 2021

ii

Technical Report Documentation Page

1. Report No. (FHWA/CA/OR-)

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
Development of Cracking Condition Assessment System
for Concrete Bridge Decks Using Image Processing
Techniques

5. Report Date:
January 31, 2022
6. Performing Organization Code

7. Author(s)
Shanglian Zhou, Wei Song

8. Performing Organization Report No.

9. Performing Organization Name and Address
Department of Civil, Construction and Environmental
Engineering
The University of Alabama
260 H.M. Comer Hall
245 7th Avenue
Tuscaloosa, AL 35487

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
ALDOT research Project No.
930-930 (GR 25663)

12. Sponsoring Agency Name and Address
Alabama Department of Transportation
1409 Coliseum Boulevard
Montgomery, Alabama 36110

13. Type of Report and Period Covered
Final Report
August 1, 2016 to December
31, 2020
14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
Modern society requires a sustainable, robust, and serviceable infrastructure system to
promote social welfare and boost economy. To support such an infrastructure system, an
efficient health monitoring framework is needed which can promptly detect the presence of
defects and perform associated rehabilitation and maintenance. In civil infrastructure, one
of the most common types of defects is cracking, which evolves rapidly under the impacts
of heavy traffic, aging of materials, and drastic environmental changes. In recent decades,
computer vision-based automated crack detection methodologies have been developed and
extensively applied by professionals and researchers. Nevertheless, a few issues and
challenges existing in this type of methodology are yet to be systematically investigated and
properly addressed. In this report, a cracking condition assessment system is developed by
leveraging advanced sensing and computer vision technologies, to address the issues and
concerns in computer vision-based crack detection and provide accurate and efficient crack
detection performance under real-world complexities. Experimental results and discussions
show that the proposed cracking condition assessment system is capable to properly address
the issues under investigation and leads to improved and more robust crack detection
performance than current image-based methodologies.
17. Key Word(s)
Civil infrastructure, Computer vision, Crack
identification, Deep learning,
Heterogeneous image fusion

18. Distribution Statement

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages

22. Price

iii

TABLE OF CONTENTS

Chapter 1: Introduction ... 1
1.1 Motivation ... 1
1.2 Challenges ... 2
1.3 Research Objective ... 5
1.4 Layout of the Technical Report .. 6

Chapter 2: Background ... 7
2.1 Non-Learning-Based Methodologies .. 7
2.2 Learning-Based Methodologies .. 8

2.2.1 Machine Learning ... 8
2.2.2 Deep Learning through DCNN ... 8

2.3 Technical Background for DCNN-Based Methodology .. 10
2.3.1 DCNN Layers ... 11
2.3.2 Sliding Window Technique .. 15
2.3.3 Data Augmentation ... 16
2.3.4 Training ... 16
2.3.5 Residual Connection ... 18

2.4 Laser Image and Measurement System .. 18
2.4.1 Measuring Principle .. 19

2.5 Performance Evaluation .. 20
2.5.1 Precision-Recall Analysis ... 20
2.5.2 Intersection over Union ... 21
2.5.3 Boundary F1 Score ... 21

Chapter 3: Proposed Techniques .. 22
3.1 Image Processing Technique for Robust Crack Detection Using Range Image Data .. 22

3.1.1 Motivation ... 22
3.1.2 Proposed Methodology ... 23
3.1.3 3D Laser Range Image Data ... 24
3.1.4 Frequency Domain Filtering ... 25
3.1.5 Crack Detection Based on Contouring Analysis .. 32

3.2 Deep Learning-Based Crack Classification .. 34
3.2.1 Motivation ... 34
3.2.2 Proposed Methodology ... 36

3.3 Deep Learning-Based Crack Segmentation .. 38
3.3.1 Motivation ... 38
3.3.2 Proposed Methodology ... 39

3.4 Deep Learning-Based Data Fusion for Crack Detection .. 46
3.4.1 Motivation ... 46
3.4.2 Heterogeneous Image Data ... 47
3.4.3 Proposed Methodology for Crack Classification .. 50
3.4.4 Proposed Methodology for Crack Segmentation .. 57

iv

Chapter 4: Experimental Study and Results ... 64
4.1 Image Processing Technique for Robust Crack Detection Using Range Image Data .. 64

4.1.1 Image Pre-Processing using Frequency Domain Filtering 64
4.1.2 Crack Detection Results Based on Contouring Analysis .. 68
4.1.3 Validation .. 70
4.1.4 Limitations .. 70

4.2 Deep Learning-Based Crack Classification .. 72
4.2.1 Data Generation .. 72
4.2.2 Experimental Setup ... 74
4.2.3 Results and Discussions .. 74
4.2.4 Limitations .. 90

4.3 Deep Learning-Based Crack Segmentation .. 91
4.3.1 Data Generation .. 91
4.3.2 Experimental Setup ... 92
4.3.3 Results and Discussions .. 93
4.3.4 Limitations .. 102

4.4 Deep Learning-Based Data Fusion for Crack Classification 103
4.4.1 Data Generation .. 103
4.4.2 Experimental Setup ... 104
4.4.3 Results and Discussions .. 105
4.4.4 Limitations .. 113

4.5 Deep Learning-Based Data Fusion for Crack Segmentation 115
4.5.1 Data Generation .. 115
4.5.2 Experimental Setup ... 116
4.5.3 Results and Discussions .. 117
4.5.4 Limitations .. 129

Chapter 5: Discussion and Future Work ... 130
5.1 Image Processing Technique for Robust Crack Detection Using Range Image Data 130
5.2 Deep Learning-Based Crack Classification .. 130
5.3 Deep Learning-Based Crack Segmentation .. 131
5.4 Deep Learning-Based Data Fusion for Crack Classification 132
5.5 Deep Learning-Based Data Fusion for Crack Segmentation 133
5.6 Concluding Remarks ... 134

Chapter 6: References ... 136

Appendix A: List of Publications ... 147

v

List of Tables

Table 1-1. The proposed methodologies and the corresponding challenges addressed. 5
Table 3-1. Detailed configurations of the proposed architectures. ... 41
Table 3-2. Detailed layer configuration of Net-4A. .. 44
Table 3-3. Detailed configuration of Net-A and Net-B. ... 53
Table 3-4. Detailed configuration of Net-C. ... 56
Table 3-5. Number of parameters of the proposed architectures. ... 56
Table 3-6. Layer configurations of Net-1 and Net-2. ... 59
Table 3-7. Layer configuration of Net-3. .. 63
Table 4-1. Summary of test results ... 71
Table 4-2. Number of image samples in each dataset. ... 73
Table 4-3. Case I: network configuration. .. 77
Table 4-4. Case I: performance metrics. ... 78
Table 4-5. Case I: the effects of changing the kernel sizes. .. 79
Table 4-6. Case II: performance metrics. .. 79
Table 4-7. Case III: performance metrics. .. 80
Table 4-8. Detailed configuration on the image datasets. ... 92
Table 4-9. Case I: performance metrics. ... 95
Table 4-10. Case II: performance metrics... 100
Table 4-11. Detailed configuration on the image dataset. .. 104
Table 4-12. Detailed statistics on the performance metrics. ... 108
Table 4-13. Precision-recall statistics of crack detection on Surface 1. 111
Table 4-14. Case I: Configuration of the image datasets. ... 118
Table 4-15. Case I: Performance metrics. ... 118
Table 4-16. Case II: Performance metrics. ... 128

vi

List of Figures

Figure 1-1. Disturbances in intensity images: (a) shadows [27]; (b) uneven illumination [28]; (c)
tire mark; (d) oil spill; and (e) stains. .. 3

Figure 1-2. Disturbances in range images: (a) rutting and uneven lanes; (b) ripples due to vehicle
vibration; and (c) grooved patterns [29]. .. 3

Figure 2-1. A graphical representation of an artificial neural network. .. 11
Figure 2-2. A matrix representation of the convolution and transposed convolution operation: (a)

convolution; and (b) transposed convolution. ... 12
Figure 2-3. An example of the max pooling operation. .. 13
Figure 2-4. The batch normalization algorithm [89]. ... 14
Figure 2-5. The sliding window technique: (a) image patch generation; and (b) zoomed-in view.

 .. 16
Figure 2-6. Residual connection (redrawn from [82]). ... 18
Figure 2-7. The laser imaging system: (a) vehicle-mounted 3D camera; (b) DAQ module; and (c)

data processing computer. ... 19
Figure 2-8. Laser-based 3D triangulation. .. 19
Figure 2-9. A schematic diagram to explain the performance metrics. .. 21
Figure 3-1. Surface variations: (a) rutting and uneven lanes; (b) ripples due to vehicle vibration;

and (c) grooved patterns. .. 23
Figure 3-2. Flow chart of the proposed crack detection methodology. .. 24
Figure 3-3. A bridge deck image data with close-up details: (a) bridge deck intensity data; (b)

intensity image; and (c) range image. ... 25
Figure 3-4. Illustration of a simulated crack: (a) spatial domain; and (b) frequency domain. 26
Figure 3-5. Zoomed-in views: (a) the filtered crack surface; (b) the edge of the filtered crack; and

(c) the bottom of the filtered crack. .. 28
Figure 3-6. Grooves in a cracked surface: (a) spatial domain; and (b) frequency domain. 31
Figure 3-7. Multiple notch filter. .. 31
Figure 3-8. A crack detection example using Canny edge detection and the contouring analysis:

(a) detected crack by Canny edge detection; and (b) detected crack by the contouring analysis.
 .. 32

Figure 3-9. Different contour scenarios (the shaded areas indicate lower elevation than the
contour level). ... 33

Figure 3-10. A DCNN architecture candidate for performance evaluation. 37
Figure 3-11. Flow chart of the proposed crack detection methodology based on range images and

DCNN. .. 38
Figure 3-12. Overall layout of the proposed DCNN architectures for semantic segmentation. ... 41
Figure 3-13. Hidden layers of the proposed architectures: (a-f) Net-1 through 6. 42
Figure 3-14. Net-4A: a counterpart of Net-4 (without residual connections). 43
Figure 3-15. Flow chart of the proposed DCNN-based crack segmentation methodology. 45
Figure 3-16. Cracks that are apparent in range images but not noticeable in intensity images. ... 48
Figure 3-17. An example of image pre-processing: (a) raw range image; (b) filtered range image;

and (c) zoomed-in views. .. 49
Figure 3-18. An illustration of the fused raw image data. .. 50
Figure 3-19. Net-A: Proposed DCNN architecture with single-channel image input. 52

vii

Figure 3-20. Net-B: Proposed DCNN architecture with dual-channel image input. 52
Figure 3-21. Net-C: Proposed DCNN architecture with dual-channel image input. 52
Figure 3-22. Flow chart of the proposed DCNN-based crack classification methodology with

heterogeneous image fusion. ... 55
Figure 3-23. Net-1: An encoder-decoder network to take a single type of image data. 58
Figure 3-24. Net-2: An encoder-decoder network to take fused raw image data. 61
Figure 3-25. Net-3: A two-stream encoder-decoder network to take fused raw image data. 62
Figure 4-1. Intensity images of bridge deck surfaces: (a) Surface 1; (b) Surface 2; and (c) Surface

3. ... 64
Figure 4-2. Original range surfaces and the high-pass filtering result: (a-c) the original range

Surface 1, 2, and 3; and (d-f) the high-pass filtered range Surface 1, 2, and 3. 65
Figure 4-3. Low-pass filtering result: side views of (a-c) the original range Surface 1, 2, and 3;

(d-f) the high-pass filtered range Surface 1, 2, and 3; and (g-i) the high-pass and low-pass
filtered range Surface 1, 2, and 3. ... 67

Figure 4-4. Multiple notch filtering result on Surface 1: (a) the high-pass, low-pass, and notch
filtered range surface; (b) zoomed-in view before notch filtering; and (c) zoom-in view after
notch filtering. ... 68

Figure 4-5. Detected contours and cracks: (a-c) contour detection results on the filtered range
Surface 1, 2, and 3; (d-f) crack detection results on the filtered range Surface 1, 2, and 3; and
(g-i) zoomed-in views of the crack detection results. ... 69

Figure 4-6. Binary crack maps of Surface 1: (a) ground truth by manual selection; (b) detected by
the proposed methodology; and (c) detected by the seed-based approach. 71

Figure 4-7. Samples of the collected range images. ... 72
Figure 4-8. Samples of the test dataset 2. ... 74
Figure 4-9. Case I: performance metrics: (a) F1 score on the test dataset 1; and (b) F1 score on

the test dataset 2. ... 82
Figure 4-10. Case I: performance metrics: (a) training time; (b) testing time on the test dataset 1;

and (c) number of parameters. .. 83
Figure 4-11. Case II: the effects of changing the mini-batch size: (a) training time; and (b) F1

score on the test datasets 1 and 2. ... 85
Figure 4-12. Case II: the effects of changing the learning rate: (a) F1 score on the test dataset 1;

and (b) F1 score on the test dataset 2. ... 87
Figure 4-13. Case II: the effects of changing the dropout factor and LReLU factor: F1 score on

the test datasets 1 and 2 upon changing (a) the dropout factor; and (b) the LReLU factor. 88
Figure 4-14. Case III: performance comparison: (a) F1 score on the test datasets 1 and 2; (b)

training time; (c) testing time on the test datasets 1 and 2; and (d) number of parameters. 89
Figure 4-15. Case IV: detected crack maps: (a) Surface 1; (b) Surface 2; and (c) Surface 3. 90
Figure 4-16. False detections on: (a) test dataset 1; and (b) test dataset 2. 90
Figure 4-17. An example of the acquired image data: (a) raw range image contaminated with

surface variations and grooved patterns; and (b) manually generated ground truth. 91
Figure 4-18. Case I: performance metrics on the test dataset: (a) Precision; (b) Recall; (c) F1; (d)

IOU; and (e) BF score. .. 96
Figure 4-19. Case I: histograms of the performance metrics on the test dataset: (a) Precision; (b)

Recall; (c) F1; (d) IOU; and (e) BF score. .. 97

viii

Figure 4-20. Case I: Illustrative examples of the crack segmentation performance (the F1, IOU,
and BF score values are displayed at the title of each prediction). ... 99

Figure 4-21. Case I: network efficiency: (a) training time; and (b) testing time. 100
Figure 4-22. Case II: Predicted crack maps on roadway images: (a) Surface 1; (b) Surface 2; and

(c) Surface 3. ... 101
Figure 4-23. Performance deterioration due to shallow cracks. ... 102
Figure 4-24. Case I: Performance metrics on the test dataset: (a) Accuracy; (b) Precision; (c)

Recall; and (d) F1. .. 106
Figure 4-25. Case I: Performance metrics: (a) training time; and (b) testing time. 108
Figure 4-26. Case I: Crack samples misidentified by Net-A with raw intensity image dataset (No.

1) but correctly identified by Net-A with raw range image dataset (No. 2). 109
Figure 4-27. Case I: Crack samples misidentified by Net-A with raw range image dataset (No. 2)

but correctly identified by Net-B with fused raw image dataset (No. 4). 110
Figure 4-28. Case I: Crack detection on Surface 1: (a) raw intensity image; (b) raw range image;

(c) filtered range image; (d) crack map detected from raw intensity image; (e) crack map
detected from raw range image; (f) crack map detected from filtered range image; and (g)
crack map detected from fused raw image. .. 112

Figure 4-29. Case II: Performance metrics: (a) classification metrics on the test dataset; and (b)
training and testing efficiency. .. 113

Figure 4-30. Examples of the acquired image data. .. 115
Figure 4-31. Case I: Bar plots of the testing performance metrics: (a) average Precision; (b)

average Recall; (c) average F1; (d) average IOU; (e) average BF score; (f) training time; and
(g) testing time. ... 119

Figure 4-32. Case I: Histograms of the testing metrics by the proposed DCNNs: (a) Net-1 (raw
range) vs. Net-2 (fused raw image); (b) Net-1 (raw intensity) vs. Net-2 (fused raw image); (c)
Net-1 (filtered range) vs. Net-2 (fused raw range); (d) Net-3 (fused raw range) vs. Net-2 (fused
raw range); and (e) Net-1 (raw range) vs. Net-1 (filtered range). .. 122

Figure 4-33. Case I: Histograms of the testing metrices by the proposed DCNNs and
benchmarks: (a) Net-1 vs. CrackNet II with raw range image; (b) Net-1 vs. CrackNet II with
filtered range image; and (c) Net-1 vs. VGG16-FCN with raw intensity image. 123

Figure 4-34. Case I: examples of crack segmentation on image patches. 124
Figure 4-35. Case I: examples of data fusion to improve segmentation performance through

cross-domain feature correlation. ... 126
Figure 4-36. Case II: Segmentation performance on a concrete roadway surface: (a) raw range

image; (b) filtered range image; (c) raw intensity image; (d) ground truth; (e) predicted by
Net-1 with raw range image; (f) Net-1 with filtered range image; (g) Net-1 with raw intensity
image; (h) Net-2 with fused raw image; (i) CrackNet II with raw range image; (j) CrackNet II
with filtered range image; (k) VGG16-FCN with raw intensity image; and (l) Net-3 with fused
raw image. ... 127

ix

Executive Summary

Modern society requires a sustainable, robust, and serviceable infrastructure system to promote
social welfare and boost economy. To support such an infrastructure system, an efficient health
monitoring framework is needed which can promptly detect the presence of defects and perform
associated rehabilitation and maintenance.

In civil infrastructure, one of the most common types of defects is cracking, which evolves rapidly
under the impacts of heavy traffic, aging of materials, and drastic environmental changes. In recent
decades, image-based automated crack detection methodologies have been developed and
extensively applied by professionals and researchers. Nevertheless, a few issues and challenges
existing in this type of methodology are yet to be systematically investigated and properly
addressed.

In this technical report, an image-based condition assessment framework for roadway crack
detection is developed. It consists of four topics: i) proposing a filter-based methodology that can
address image disturbances to promote a robust image-based roadway crack detection; ii)
performing a systematic study to investigate the impact from hyperparameter selection on the
performance of deep convolutional neural network (DCNN) on roadway crack classification; iii)
achieving pixel-level crack detection resolution on image data of real-world complexities through
DCNN-based roadway crack segmentation; and iv) investigating the impact from heterogeneous
image data on DCNN-based roadway crack detection and proposing heterogeneous image fusion
strategies to address data uncertainties.

Overall, experimental results and discussions show that the proposed crack detection framework
is capable to properly address the issues under investigation and leads to improved and more robust
crack detection performance than current image-based methodologies.

1

CHAPTER 1: INTRODUCTION

1.1 Motivation

Recent years have witnessed a steady trend of growth in the transportation infrastructure
investment. For example, according to the U.S. Census Bureau [1], the total construction spending
on highway and street during March 2020 was estimated at a seasonally adjusted annual rate
(SAAR) of 108.6 billion dollars, 4.5% higher than in February 2020 and 5.3% higher than in March
2019. Over a wider time span, the SAAR of the construction spending on highway and street has
steadily increased from 78.2 billion dollars in March 2010 [2] to 108.6 billion dollars in March
2020 [1], at an annualized growth rate of 3.3%. Alongside the vigorous development of the
transportation infrastructure, there has been a rising demand for a more efficient investment on
transportation infrastructure by facilitating performance-based decision-making and appropriately
managing infrastructure assets for better stewardship of the transportation system.

The Moving Ahead for Progress in the 21st Century Act (MAP-21) [3] sets the course for
transportation investment in highways to address many challenges facing the U.S. transportation
system such as improving safety and maintaining infrastructure condition. One of the core
concepts and requirements under MAP-21 is to establish performance-based planning and
programming to promote an efficient transportation system and improve transportation decision-
making. For the Federal Highway Administration (FHWA), State Department of Transportation
(DOT), and local governments, long-term efforts need to be devoted to implementing performance
management activities and methodologies, such that the requirements by MAP-21 are fulfilled.

Right-of-way (ROW) imagery has become one of the data sources submitted to both the
Transportation Asset Management Plans (TAMP) [4] mandated by MAP-21 and the Highway
Performance Monitoring System (HPMS) [5]. By using image data taken from a ROW imaging
system (e.g., a survey vehicle), image-based methodologies with advanced computer vision
techniques for roadway defects detection can offer an efficient performance-based framework to
facilitate the condition assessment and decision-making process for transportation infrastructure.
Thus, it has been a rising interest for professionals and researchers to develop more efficient and
accurate image-based methodologies on roadway defects detection for the purpose of promoting
social welfare and stimulating economy through improving the transportation system.

1.1.1 Literature review on image-based crack detection

Cracking distress is one of the most common types of defects in civil infrastructure [6], which is
caused by various factors such as vehicle loading, aging of materials, and long-term environmental
effects, etc.[7] For example, the freeze-thaw effect [8,9] can cause concrete cracking due to
moisture freezing and expansion; the alkali-silica reaction (ASR) can lead to aggregates expansion
and cracking [10]. As such cracks gradually evolve, propagate, and coalesce into major structural
cracks, the integrity and serviceability of the infrastructure (e.g., bridges [11,12], roadways
[13,14], pipelines [15], and tunnels [16]) is largely deteriorated, which is one of the pressing
concerns facing today’s civil engineering community. Taking bridge structures as an example,
cracks can not only impair the bridge aesthetics but also cause structural damage by allowing

2

corrosive chemical agents (e.g., water and de-icing salts) to penetrate through the bridge decks,
causing deteriorated serviceability and even structural failures. Thus, the development of accurate
and efficient crack detection methodologies using imagery data is of great importance, as it
facilitates a prompt transportation decision-making and rehabilitation by detecting and providing
cracking information for health monitoring and condition assessment of the infrastructure.

In recent decades, image-based crack detection methodologies have been extensively developed
and applied [6]. Compared against some traditional manual approaches such as visual inspection
[17], which are usually subjective and labor-intensive [18], image-based methodologies offer an
automated yet more consistent and objective alternative that can reduce labor cost and improve
crack detection efficiency.

From the perspective of feature representation and classification, current image-based crack
detection methods can be categorized into non-learning-based and learning-based methods. Most
of early image-based methods belong to the non-learning-based category. This type of
methodology usually employs handcrafted image processing techniques such as filtering,
thresholding, and morphological operation, for crack enhancement and cracking feature extraction.
Although certain levels of success were reported in their applications, the non-learning-based
methods still suffer from some issues. For example, the handcrafted image processing procedures
or techniques used in non-learning-based methodologies are usually involved with prior user input
or subjective parameter selection. Thus, their applicability under real-world scenarios is usually
limited, due to the subjectivity from human intervention and the lack of ability to self-adapt to
variations of the ambient environment.

Learning-based methods can potentially alleviate the above subjectivities by directly learning from
data, making predictions via self-learned pattern recognition and extraction. In the recent decade,
deep convolutional neural network (DCNN), as a type of deep learning-based method, has rapidly
evolved into the most advanced and popular crack detection methodology due to its high versatility
and wide applicability. Nevertheless, for current DCNN-based crack detection methodologies,
several issues and challenges related with the DCNN layout and image data also exist.

1.2 Challenges

The major challenges for today’s image-based crack detection methodologies are briefly
summarized as follows, a majority of which remain to be systematically investigated and properly
addressed to promote the robustness of image-based methodologies against real-world data:

i) Challenge 1 (disturbances in intensity images): For crack detection methodologies using
intensity image data, the general assumption is that cracks are darker (i.e., lower intensity value)
than non-crack regions [19]. However, during image data collection, influences from ambient
environment such as shadows, varying lighting condition [19-23] often exist in the acquired
intensity data, which can result in non-uniform background illumination and low intensity contrast,
thus deteriorating the crack detection performance. Besides, image disturbances such as stains, oil
spills, and tire marks [19,24-26] which possess crack-like features and characteristics can add
difficulties to intensity-based crack detection methodologies. Figure 1-1 illustrates some typical
types of disturbances existing in intensity image data;

3

Figure 1-1. Disturbances in intensity images: (a) shadows [27]; (b) uneven illumination [28]; (c) tire mark; (d)

oil spill; and (e) stains.

ii) Challenge 2 (disturbances in range images): Crack detection methodologies using range
(i.e., elevation) image data usually rely on the elevation difference between cracks and non-crack
regions to interpret the presence of cracks [19]. Despite its advantages over intensity image data
such as being insensitive to varying lighting condition, range image data also suffers from
disturbances such as surface variations, grooved patterns, shoulder drop-offs, pavement joints, and
pavement edges [29-31]. These image disturbances are undesirable, because they usually lead to
false positive detections due to similar elevation changes as cracks. Moreover, the performance of
range-based methodologies may deteriorate on cracks with shallow depths [29,31]. Examples on
the disturbances in range images are illustrated in Figure 1-2;

Figure 1-2. Disturbances in range images: (a) rutting and uneven lanes; (b) ripples due to vehicle vibration;

and (c) grooved patterns [29].

4

iii) Challenge 3 (subjectivities due to parameter selection in image pre-processing techniques):
The image disturbances existing in intensity or range image data, as introduced above, need to be
properly addressed prior to crack detection for crack enhancement and noise suppression purpose.
For non-learning-based methodologies, it is common practice to apply image pre-processing
techniques such as filtering [13,26,32,33], morphological operation [34,35], and surface fitting [36]
to eliminate these image disturbances from the image data. However, such image pre-processing
techniques are usually involved with a parameter selection process, which is often expertise-
intensive, user-dependent, and case-dependent. The subjectivities and uncertainties associated
with the image pre-processing techniques usually exist, leading to performance deterioration of
the crack detection methodologies against image data of real-world complexities;

iv) Challenge 4 (detection of crack objects with enclosed boundaries): The majority of the
non-learning-based crack detection methodologies such as edge-based crack detection usually do
not consider crack connectivity [37], thus have difficulties estimating the cracking properties such
as area and width which may serve as important indicators for health condition assessment and
decision-making;

v) Challenge 5 (hyperparameter configuration for DCNN-based crack detection): For crack
detection applications based on DCNN, a critical factor on the network performance is to
determine the optimal joint configuration of the hyperparameters such as network width, depth,
and learning rate [31]. Some hyperparameters such as network depth, width, and number of filters
determine the DCNN layout and, accordingly, the model capacity and complexity. Furthermore,
other hyperparameters such as learning rate and momentum factor governs the efficiency of the
DCNN on learning from the input data [38]. Determination of these hyperparameter values is
usually an experimental process, and no exact guidelines to the design process of an ideal DCNN
architecture and its associated training scheme for crack detection tasks are available [38,39];

vi) Challenge 6 (pixel-level crack classification on real-world image data through DCNN): In
recent years, DCNN-based methodologies have gradually evolved from patch-level crack
classification to crack object detection and then to pixel-level classification (i.e., segmentation).
Semantic segmentation through DCNN can realize pixel-level resolution on crack detection.
Nevertheless, a few issues remain to be properly addressed for this type of methodology. For
example, due to the uncertainty in real-world image data, DCNN-based crack segmentation studies
such as [30,40-42] often employ image pre-processing techniques to address image-related issues,
despite the high adaptability of DCNNs. However, it is preferable to exploit raw image data rather
than pre-processed data to minimize human intervention. Moreover, current methodologies [30]
have difficulties achieving robust crack segmentation performance on raw image data
contaminated by disturbances such as grooved patterns in range images;

vii) Challenge 7 (DCNN-based crack detection on real-world image data through data fusion):
For DCNN-based crack detection applications, either intensity or range image data is used for
analysis. As explained above, the image-related issues existing each type of image data need to be
properly addressed through image pre-processing techniques even for DCNN-based
methodologies [30,40-42]. The uncertainties and subjectivities associated with the image pre-
processing, however, cannot be completely avoided. From the perspective of image data, it may
be feasible to exploit data fusion strategies [43-45] to combine the information in different types

5

of image data to address data uncertainties and obtain integrated and comprehensive information,
as a better alternative to applying image pre-processing techniques. Nevertheless, in current
literature on DCNN-based crack detection, studies and discussions on developing effective data
fusion strategies are lacking; besides, the influences from different types of image data on DCNN-
based crack segmentation performance are yet to be systematically investigated.

1.3 Research Objective

The overarching goal of this technical report is to develop novel image-based condition assessment
methodologies for civil infrastructures by leveraging advanced sensing and imaging technologies.
To achieve this goal, several research objectives aiming at addressing the challenges summarized
in section 1.2 by proposing novel image-based crack detection methodologies are stated as below:

i) To develop a robust crack detection methodology by proposing a novel image pre-
processing technique with minimal prior user input and subjectivity to effectively eliminate the
image disturbances in laser-scanned range image data. By leveraging this methodology,
Challenges 2 and 3 which are related with the issues in the image data and associated image pre-
processing can be properly addressed. Furthermore, the issue as described by Challenge 4 is also
solved through this methodology by using a contour-based crack detection algorithm;

ii) To propose a DCNN-based crack classification methodology and perform a systematic
study on the optimal joint hyperparameter configuration on the DCNN architecture and the
associated training scheme, providing prior knowledge and insights to future research and
applications. Thus, Challenge 5 regarding the hyperparameter selection is tackled;

iii) To propose a DCNN-based crack segmentation methodology which can achieve pixel-level
resolution on crack detection and is robust against image disturbances in raw image data under
real-world scenarios. This methodology aims to address the issue as described by Challenge 6;

iv) To address Challenges 1, 2, 3, and 7 which are related with the image data, a DCNN-based
crack detection methodology is developed to investigate the effect of different types of image data
(i.e., heterogeneous image data) on DCNN performance and introduce robustness to DCNN-based
applications through heterogeneous image fusion.

Table 1-1 summarizes the proposed methodologies in this technical report and the corresponding
challenges addressed by them.

Table 1-1. The proposed methodologies and the corresponding challenges addressed.

Methodologies proposed in this technical report Section
number

Addressed
challenges

A robust image processing technique for crack detection using range images 3.1 2, 3, 4
 DCNN-based crack classification using range images: A comparative study
on hyperparameter selection

3.2 5

 DCNN-based crack segmentation using range images 3.3 6
 DCNN-based crack classification and segmentation with heterogeneous
image fusion

3.4 1, 2, 3, 7

6

1.4 Layout of the Technical Report

The rest of this technical report is organized in the following manner. Chapter 2 first provides a
thorough literature review on image-based crack detection methodologies, and then introduces the
technical background related with the proposed DCNN-based methodologies. Chapter 3 describes
the proposed image-based crack detection methodologies in detail. Then, in Chapter 4,
experimental studies using the proposed methodologies for crack detection on image data of real-
world complexities are performed, and the associated results and discussions are presented.
Chapter 5 summarizes the findings and conclusions for each proposed methodology, and then
provides an overall assessment and conclusion regarding this technical report.

7

CHAPTER 2: BACKGROUND

Section 2.1 and 2.2 provide a thorough literature review on image-based crack detection
methodologies, putting emphasis on introducing recent advancements in DCNN-based crack
detection. Then, information on the technical background related with DCNN is briefly described
in section 2.3. Section 2.4 introduces the image acquisition system used in this study. And, the last
section 2.5 describes the quantitative metrics for performance evaluation.

2.1 Non-Learning-Based Methodologies

Non-learning-based methodologies usually require handcrafted image processing procedures or
techniques such as edge detection for feature extraction. Some of the non-learning-based
methodologies used intensity image data, relying on the change of pixel intensities in cracked
regions to interpret the presence of cracks. Abdel-Qader et al. [46] compared the effectiveness of
four edge detection techniques (Canny edge detection, Sobel edge detection, Fourier transform,
and fast Haar transform) on crack detection. They concluded that the fast Haar transform had the
most accurate detection performance. Salman et al. [32] adopted Gabor filter to detect cracks based
on the orientation feature of cracks. Hashimoto [47], Yamaguchi and Hashimoto [37], and Zhu et
al. [48] utilized the concept of percolation, a physical model to describe liquid permeation, for
crack detection. This approach initializes a crack seed region and labels the neighboring regions
as cracks based on the percolation model. Tsai et al. [49] applied an algorithm [50] to detect
pavement cracks through probabilistic modeling in crack presence and dynamic programming
(DP), and concluded it outperformed other methods in accuracy and robustness. Huang and Xu
[51] introduced a real time pavement crack detection algorithm which divides an image into grid
cells and identifies crack cells by matching their neighbors with predefined templates/patterns.

In general, because of the intensity-based data acquisition method, the performance of many crack
detection algorithms is severely hampered in the presence of shadows, varying lighting conditions,
and poor intensity contrast between cracks and surrounding surface [19-23]. Moreover, image
noises such as blemishes (e.g., tire marks, oil spills, stains, etc.) [19,24-26] also deteriorate the
crack detection performance. To address these issues in intensity images, several pre-processing
techniques such as median filtering [52,53] and grayscale multiplication [54] have been adopted
to improve the performance of the intensity-based approaches under varying illumination
condition. Furthermore, technologies including stereovision and laser imaging were explored by
many researchers to obtain three-dimensional (3D) data for crack detection. Wang et al. [25,55-
57] performed pioneering study in 3D pavement image processing. They developed and applied
an automated pavement distress survey system. In this survey system, intensity image data was
collected by a Digital Highway Data Vehicle (DHDV) to reconstruct 3D surfaces through
stereovision. Torok, et al. [58] and Jahanshahi and Masri [59] adopted 3D reconstruction based
on Structure-from-Motion (SfM) [60] to gain depth perception from intensity images by using
multiple cameras. Despite the use of stereovision-based techniques, several inherent issues in the
intensity images, especially the varying illumination condition, cannot be completely avoided.

More recently, laser-based 3D data collection system has been adopted, because the laser-scanned
data is insensitive to varying lighting condition, and the aforementioned image noises do not

8

interfere with the crack detection by using the collected range (i.e., elevation) image data [19].
Tsai et al. [61,62] developed a road survey system using a Georgia Tech Survey Vehicle (GTSV)
mounted with a Laser Crack Measurement System (LCMS [63]), which can collect high-resolution
3D continuous pavement profiles. In a crack detection system proposed by Zhang, et al. [64], 3D
pavement surface data was collected by using DHDV with PaveVision3D system. After obtaining
the range data, methods such as morphological operation [18], wavelet transform [36], and DP-
based method [61,65] were adopted for crack detection.

Methods using range images rely on the difference in elevations between the crack and
surrounding regions for crack detection. This type of image data, however, also has issues such as
surface variations, scanning noises, and non-crack patterns (e.g., grooves) [7,36]. Similar to
intensity-based methods, range-based methods usually employ image pre-processing techniques
to tackle these issues prior to crack detection. Ouyang and Xu [36] applied a surface fitting
technique to remove the large-scale surface variations (e.g., uneven surface, transverse ripples due
to vehicle vibration) in the range images. Jiang and Tsai [65] implemented an outlier removal and
profile rectification technique by using a Gaussian filter to flatten the scanned range surface.

Overall, a few challenges and issues as summarized in Challenge 1, 2, 3, and 4 in section 1.2 still
exist in the non-learning-based methodology. Especially, the uncertainty and subjectivity due to
parameter selection in the image pre-processing and defects detection procedures, as stated in
[29,42], is a major challenge for the non-learning-based methods to achieve consistent
performance under real-world complexities.

2.2 Learning-Based Methodologies

Recent advancement in computing technologies has paved a way for machine learning-based crack
detection methods. This type of methods has drawn researchers’ interests by learning from data
and making self-adaptations with minimum human intervention.

2.2.1 Machine Learning

Some pioneering applications using machine learning for crack pattern recognition were reported
in literature. Lee and Lee [66] proposed a crack detection and classification method by integrating
an image-based neural network (NN), a histogram-based NN, and a proximity-based NN. Each of
them has a 3-layer architecture to detect and classify different crack patterns. Saar and Talvik [67]
applied NN to detect cracks and further classify them into separate types including alligator crack,
longitudinal crack, and transverse crack. In another machine learning-based application, support
vector machine (SVM) was utilized by Moussa and Hussain [68] to classify pavement cracks into
alligator crack, block crack, longitudinal crack, and transverse crack. Jahanshahi, et al. [18]
evaluated the crack classification performance of three different classifiers: NN, SVM, and nearest
neighbor classifier. They demonstrated that the first two classifiers had similar performance and
both outperformed the last one. However, the machine learning methods used by these early
studies only represent one or two layers of feature abstraction and cannot fully reflect the
complexity of typical roadway surfaces [42].

2.2.2 Deep Learning through DCNN

9

As a deep learning-based method, deep convolutional neural network (DCNN) has gained
popularity from researchers due to its wide adaptability and versatility. DCNN is advantageous
over other image-based methods on that i) it can directly learn from the input data, thus resulting
in minimum human intervention and prior assumption; and ii) it can reflect the data complexity
through a hierarchical feature abstraction which is enabled by its multi-level network layout.
DCNN architectures are loosely inspired by the biological neural network system in the cerebral
cortex, where it processes the input percept using different areas of the cortex to abstract
hierarchical levels of features [69]. The term “deep network”, opposite to a “shallow network”,
refers to the fact that a DCNN usually consists of multiple convolutional layers and fully connected
layers to extract high-level features from the data.

• Crack classification

Early applications applied DCNNs for crack classification tasks. Zhang, et al. [70] proposed an
automated roadway crack detection method, using DCNN to predict whether the input image
patches contained cracks or not. They compared it with SVM and the Boosting method, and
concluded it had higher classification accuracy. Cha, et al. [39] proposed a DCNN architecture to
detect concrete cracks in intensity images under realistic situations such as uneven lighting
condition. They showed that it outperformed the traditional edge detection methods. Zhang, et al.
[41] applied DCNN to detect pavement cracks and sealed cracks. Park, et al. [71] proposed a
roadway crack detection method using DCNN to categorize the image patches into crack, road
marking, and intact area.

These crack classification methodologies are patch-based; that is, images are cropped into patches
which have smaller sizes, and each image patch is classified by the DCNN as containing cracks or
not. Thus, for patch-based methods, resolution on the extracted cracking information is limited.

• Crack object recognition

Another type of task that can be accomplished by DCNN is crack object recognition. Typical
applications use region-based DCNNs [72,73] which can generate bounding boxes to enclose
cracking features. Cha, et al. [74] modified the faster R-CNN [73] to detect five defective objects
including concrete cracks. Maeda, et al. [75] applied different region-based DCNNs to generate
bounding boxes for eight different types of roadway defects. Xue and Li [76] proposed a region-
based DCNN to detect and locate five types of defects in shield tunnel linings. Nevertheless, the
issue of limited resolution on crack detection still exists in some applications using region-based
DCNNs.

• Crack segmentation

More recent development in DCNN-based crack detection is pixel-wise crack classification
through semantic segmentation. The semantic segmentation is a process to segment an image into
different regions by assigning each image pixel with a categorical label. Thus, instead of
identifying each image patch as containing cracks or not, semantic DCNNs predict each image
pixel as a “crack” or “non-crack” pixel, leading to a higher resolution.

10

The encoder-decoder network is a type of semantic DCNN which has gained many researchers’
interests. The encoder-decoder network contains two essential components: an encoder network
to extract features from the input image, and a decoder network to expand the features extracted
through the encoder such that the size of the output probability map matches with that of the input
image. Yang, et al. [77] proposed an encoder-decoder network based on VGG19 [78] to produce
pixel-level crack maps on concrete pavements and walls. Zou, et al. [79] proposed DeepCrack, an
encoder-decoder network based on SegNet [80] with multi-scale cross entropy losses. They
showed it outperformed some other DCNNs such as U-Net [81] and SegNet on crack segmentation
performance. Bang, et al. [14] proposed an encoder-decoder network based on ResNet [82] for
roadway crack segmentation on images containing non-road objects. Dung [83] developed an
encoder-decoder network with a VGG16-based encoder for crack segmentation on concrete
surfaces.

Besides the applications using encoder-decoder networks, some other applications proposed or
applied other types of semantic DCNNs for crack segmentation tasks. Zhang, et al. [42], Tong, et
al. [30], and Fei, et al. [40] developed CrackNet and its variants, which are different than the
encoder-decoder networks in that their extracted feature maps maintain an invariant spatial size
throughout all layers. Tan, et al. [84] applied Mask R-CNN [85], which is modified from the faster
R-CNN [73] to further improve the detection resolution to pixel level, for crack segmentation.

Overall, it can be observed as a general trend that, in recent decades, image-based crack detection
methodologies have gradually evolved from non-learning-based to learning-based, with their
detection resolutions improved to pixel level (i.e., crack segmentation). Nevertheless, despite the
high adaptability of DCNN-based methodologies, several challenges as stated in Challenge 5, 6,
and 7 in section 1.2 remain to be systematically investigated and properly addressed for this type
of methodology to achieve robust and accurate detection performance.

2.3 Technical Background for DCNN-Based Methodology

Neural networks, or more precisely Artificial neural networks (ANN), are computing systems
developed for performing multi-domain tasks through learning from data [38]. Vaguely inspired
by the biological neural network system that constitutes the cerebral cortex, the ANN gains
perception from the input data based on hierarchical feature abstraction through neurons and the
associated connectivity patterns [38]. An artificial neuron is referred to as the central processing
unit of an ANN, each connected to many others through “synapses” to mimic the functionality of
biological neurons. A neuron represents a mathematical relationship between the input and output,
for example, a weighted sum [38]. As illustrated by an example in Figure 2-1, an ANN often
consists of an input layer, multiple hidden layers, and an output layer, where the neurons in each
layer are connected with others through “synapses” defined by weights (e.g., 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑗𝑗 in Figure
2-1). The influence or contribution of the input to each neuron is tuned by adjusting the weights
through back-propagation [38]. In Figure 2-1, the forward-inference process refers to the
calculation and storage of intermediate variables from the input layer to the output layer; and, the
back-propagation process refers to the computation of the gradient given the model loss with
respect to the network weights. Through a learning process based on back-propagation, the ANN
can address problems such as object recognition by adapting to data reflecting the patterns of a
specific domain. More details regarding the network learning process are described in section 2.3.4.

11

Figure 2-1. A graphical representation of an artificial neural network.

Convolutional neural networks (CNN) [38,86] can be considered as a subclass of ANN, where a
CNN takes image data as the input and employs a mathematical operation called convolution [38].
By performing convolution operations on the image data, CNNs can extract spatial features such
as edge and shape to facilitate image-based object detection and pattern recognition tasks.

Evolved from CNN, deep convolutional neural network (DCNN) [87] employs multiple (e.g.,
hundreds of) network layers that constitute a hierarchical layout, as implied by the term “deep” in
its name. As described in section 2.2.2, with its high degree of model ability and self-adaptation
to real-world scenarios, DCNN can achieve a high-level feature abstraction with minimum human
intervention, thus it has become one of the most advanced and prevailing deep learning algorithms
in the domain of image-based pattern recognition.

In the following subsections, five topics related with the proposed DCNNs in this study, including
the DCNN layers, sliding window technique, data augmentation, training scheme, and residual
connection, are introduced.

2.3.1 DCNN Layers

In this section, the network layers utilized in this study to construct the proposed DCNN
architectures are briefly described. More detailed technical information on these layers can be
found in [38,88].

• Convolutional layer

In a DCNN, the functionality of a convolutional layer is to perform feature extraction through a
convolution operation. The convolution operation is a dot product between a convolutional kernel

12

and a subregion of the input feature map, plus a bias term, which can be symbolically expressed
as Equation (2-1). In this equation, 𝐈𝐈 and 𝐘𝐘 are the input and output feature map, respectively; 𝐖𝐖
and 𝑏𝑏 are the weights and bias of the convolutional kernel; ⊙ denotes the dot product. In the
convolution operation, the kernel slides horizontally and vertically along the input with a step size
called stride. Besides, zero paddings can be added to the input to produce an output with a specific
dimension. Figure 2-2 (a) illustrates a two-dimensional (2D) example of the convolution operation
through a matrix representation. In this example, a 3×3 (i.e., height×width, same hereafter)
convolutional kernel is applied to a 4×4 input feature map with a stride of 1, resulting in a 2×2
output. In Figure 2-2 (a), 𝑊𝑊𝑖𝑖𝑗𝑗, 𝐼𝐼𝑖𝑖𝑗𝑗, and 𝑌𝑌𝑖𝑖𝑗𝑗 denote the elemental entry of the weight matrix 𝐖𝐖, input
matrix 𝐈𝐈, and output matrix 𝐘𝐘, respectively; 𝑏𝑏 denotes the kernel bias scalar; 𝐉𝐉 denotes a matrix of
all ones whose dimension is the same as 𝐘𝐘. It can be seen that the convolution operation can be
concisely represented as a matrix multiplication. The transposed convolution is also illustrated in
Figure 2-2 (b), which can be interpreted as the inverse process of the convolution operation. The
transposed convolution is described in section 2.3.1. It is worth noting that in this figure, to keep
a concise narrative, the same symbolic notations are used to explain the convolution and transposed
convolution operation, but they carry different values.

𝐘𝐘 = 𝐖𝐖⊙ 𝐈𝐈 + 𝑏𝑏 ∙ 𝐉𝐉 (2-1)

Figure 2-2. A matrix representation of the convolution and transposed convolution operation: (a)

convolution; and (b) transposed convolution.

13

• Transposed convolutional layer

As implied by the term “transposed”, the sparse matrix representation of the kernel weights in the
transposed convolutional layer is symbolically the transpose of the weight matrix in the
corresponding convolutional layer, as illustrated in Figure 2-2. Similar with the use of zero
paddings in the convolution operation, boundary cropping is also often used in the transposed
convolution to trim the output size. Figure 2-2 (b) shows a 2D example of the transposed
convolution operation, in which a 2×2 input feature map is up-sampled into a 4×4 output by using
a 3×3 transposed convolutional kernel with a stride of 1. In a semantic DCNN, multiple transposed
convolutional layers with a stride larger than 1 are usually employed to gradually expand the size
of the feature map. It is noted that each down-sampling process through either a convolutional or
max pooling layer is paired with an up-sampling process performed by a transposed convolutional
layer, thus the DCNN is able to maintain the same dimension (i.e., height and width) between the
input image and the output probability map.

• Max pooling layer

In DCNN applications, it is often needed to reduce the dimension of the input representation such
as the input image or hidden-layer feature map. By performing dimensionality reduction, the
computational cost is reduced accordingly, thus improving DCNN training efficiency. Max
pooling is an effective process often used in DCNN classification or segmentation tasks for
dimensionality reduction [38]. A max pooling layer performs down-sampling on the input feature
map by only keeping the maximum value in each kernel, as illustrated in Figure 2-3. In this figure,
a 2×2 max pooling kernel with a stride of 2 is applied to the input feature map which has the
dimension as 4×4. Correspondingly, the output reserves the maximum value in each subregion,
resulting in a smaller size as 2×2. Through the max pooling operation, the feature map is down-
scaled by a factor of 2. The difference in terms of down-sampling by the max pooling vs. the
convolution operation is that no learning process is involved in the max pooling layer.

Figure 2-3. An example of the max pooling operation.

• Batch normalization layer

Batch normalization is a regularization technique proposed by [89] to address the issue of internal
covariate shift. This issue often occurs during training, when the distribution of inputs to each layer
shifts due to the change in network parameters [89]. Such an internal covariate shift is undesirable,
because it potentially shifts the original training problem and thus deteriorate the model
performance. The batch normalization algorithm employs two learnable parameters called scale

14

and shift factors to normalize the input distribution in each batch, such that the internal covariate
shift issue is mitigated. The formulation of batch normalization is provided in Figure 2-4 [89]. As
shown in this figure, first, an activation 𝑥𝑥 over a mini-batch is normalized by its mean and variance;
then, the distribution of the normalized values of 𝑥𝑥 is modified by the two learnable parameters as
the scale 𝛾𝛾 and shift 𝛽𝛽.

Figure 2-4. The batch normalization algorithm [89].

• Nonlinear activation layer

The leaky rectified linear unit (LReLU) [90] is adopted as a nonlinear activation function to add
nonlinearity to a DCNN model. The formulation of LReLU is provided in Equation (2-2). As
expressed in Equation (2-2), LReLU is a bi-linear function, where the gradient is equal to 1 for the
non-negative neuron input, and a small positive value α for the negative input. By activating the
negative neuron inputs during back-propagation with a small positive gradient α, LReLU can
avoid the “dying” neuron problem [38,90] which often occurs upon using the rectified linear unit
(ReLU) [91].

LReLU (𝑥𝑥) = � 𝑥𝑥, 𝑥𝑥 ≥ 0

α𝑥𝑥, 𝑥𝑥 < 0 (2-2)

where 𝑥𝑥 is the neuron input; α is a small positive value.

• Dropout layer

Dropout was proposed by [92] as an effective regularization technique to address the issue of
overfitting. Overfitting occurs when a DCNN becomes too attuned to the training dataset that it
loses the ability to properly adapt to a new dataset. The dropout layer prevents overfitting by
randomly deactivating neurons from the previous layer with a certain probability (e.g., 50%).
During the training process, dropout forces the network to adapt to different neurons, thus
improving generalization.

15

• Fully connected layer

A fully connected layer is usually adopted in a DCNN for image classification tasks. The term
“fully connected” implies that each neuron in this layer has connections to all the neurons in the
previous layer, as described by Equation (2-3). This operation is a matrix multiplication plus a bias
vector. The fully connected layer can largely reduce the size of the feature map, and the output
(i.e., scores) from this layer is usually mapped to a probability distribution for class prediction.

 𝐲𝐲 = 𝐖𝐖 ∙ 𝐱𝐱 + 𝐛𝐛 (2-3)

in this equation, 𝐱𝐱 denotes a vector flattened from the neuron input; 𝐖𝐖 denotes the weight matrix
of the fully connected layer; 𝐛𝐛 denotes the bias vector; and, 𝐲𝐲 denotes the neuron output.

• Softmax layer

A softmax layer is usually placed at the end of a DCNN to normalize the pixel values into a
probability of each pixel belonging to a specific class. The softmax function is expressed as
Equation (2-4). In this equation, 𝑥𝑥𝑖𝑖 denotes the pixel value at the 𝑖𝑖𝑡𝑡ℎ depth channel of the input; 𝑛𝑛
denotes the number of classes which is equal to the depth (i.e., third dimension) of the input matrix.
Softmax (𝑥𝑥𝑖𝑖) produces the probability of each pixel belonging to the 𝑖𝑖𝑡𝑡ℎ class.

Softmax (𝑥𝑥𝑖𝑖) =

𝑒𝑒𝑥𝑥𝑖𝑖
∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (2-4)

2.3.2 Sliding Window Technique

The sliding window technique is adopted by many researchers [39,93,94] to reduce the dimension
of input image and increase the number of image samples through a cropping operation. As
illustrated by Figure 2-5 (a), a square kernel slides along the horizontal and vertical direction of an
image, with 50% overlap, to crop the original image into image patches which have smaller spatial
dimensions to reduce computational cost. In this study, image patches of 256×256 pixels are
generated for training and testing.

Figure 2-5 (b) shows the zoomed-in view of the sliding window process, where different data
regions are utilized multiple times during prediction. Then, a summed crack probability map with
the same size as the original image is generated through arithmetic addition, which is an inverse
operation of the sliding window process; the values in the summed probability map are divided by
the divisors as shown in Figure 2-5 (b), based on how many times each image pixel is predicted.
Finally, a binarized crack map is generated from the crack probability map with a threshold of 0.5,
where white pixels indicate cracks and black ones indicate the background.

16

Figure 2-5. The sliding window technique: (a) image patch generation; and (b) zoomed-in view.

2.3.3 Data Augmentation

Data augmentation is another effective means to reduce overfitting and improve generalization of
a DCNN by artificially increasing the number of image data [95]. It is a process to generate
additional samples of an image by applying label-preserving transformations such as rotation,
which leave the underlying class unchanged [96]. Common data augmentation techniques include
random rotation, translation, mirroring, and scaling, etc. [97]. In this study, the number of image
patches is effectively increased through these data augmentation techniques.

2.3.4 Training

Three topics related with the DCNN training process, including the cost function, optimization
algorithm, and parameter initialization, are introduced in this section.

• Cost function

In this study, the cross entropy loss [98] is employed as the cost function to measure the
discrepancy between the ground truth and prediction. The formulation of the cross entropy loss is
expressed in Equation (2-5).

𝐸𝐸 = −

1
𝑚𝑚
����𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘 ∙ ln�𝑝𝑝𝑗𝑗,𝑖𝑖
𝑘𝑘 ��

𝑛𝑛

𝑖𝑖=1

𝑁𝑁

𝑗𝑗=1

𝑚𝑚

𝑘𝑘=1

+ 𝛺𝛺(𝐰𝐰) (2-5a)

𝛺𝛺(𝐰𝐰) =

𝜆𝜆
2
𝐰𝐰T𝐰𝐰 (2-5b)

in this equation, 𝐸𝐸 denotes the cross entropy loss; 𝑚𝑚 denotes the mini-batch size, which refers to
the number of input images participating in the training in each iteration; 𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘 is a logical operator,
where the superscript 𝑘𝑘 denotes the 𝑘𝑘𝑡𝑡ℎ image; the subscripts 𝑗𝑗 and 𝑖𝑖 indicate the logical operator
is evaluated at the 𝑗𝑗𝑡𝑡ℎ pixel for the 𝑖𝑖𝑡𝑡ℎ class; 𝑁𝑁 is the total number of pixels in each image; 𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘 is

17

equal to 1 if the pixel belongs to the 𝑖𝑖𝑡𝑡ℎ class and 0 otherwise; 𝑛𝑛 is the number of classes, which
is equal to 2 (i.e., “crack” vs. “non-crack”) in this study; 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑘𝑘 is the probability of the pixel
belonging to the 𝑖𝑖𝑡𝑡ℎ class, which is calculated by Equation (2-4). An additional penalty term
expressed as Equation (2-5b) is introduced in Equation (2-5a) to regularize the training process by
penalizing large weights. In Equation (2-5b), 𝐰𝐰 denotes a vector whose entries are the learnable
parameters including the weights in the convolutional layers, fully connected layers, transposed
convolutional layers, and batch normalization layers (i.e., scale and shift factors); the superscript
T denotes the transpose operation; 𝜆𝜆 is a hyperparameter called weight decay factor to adjust the
degree of penalization to the weights.

• Optimization algorithm

During DCNN training, the objective is to reduce the discrepancy between the ground truth and
prediction by minimizing the cost function. In this study, the mini-batch stochastic gradient descent
(SGD) with momentum [99] is adopted as the optimization algorithm. The formulation is
expressed in Equation (2-6). In this equation, 𝛉𝛉 is the model parameter vector which consists of
two components: the weight vector 𝐰𝐰 and bias vector 𝐛𝐛 in the DCNN; 𝛉𝛉𝑡𝑡,𝑚𝑚𝑡𝑡 with a subscript 𝑡𝑡
indicate the parameter vector and mini-batch input at the 𝑡𝑡𝑡𝑡ℎ iteration, respectively; 𝐸𝐸 denotes the
cross entropy loss, calculated by Equation (2-5); 𝜀𝜀 is a hyperparameter called momentum which
adjusts the learning speed; 𝑟𝑟 is another hyperparameter to tune the efficiency of learning which is
referred to as the learning rate.

i) Learning scheme

as expressed in Equation (2-6c), a piece-wise learning rate scheme is employed for the
optimization in this study; that is, the learning rate decays every 2 epochs by a drop factor of 0.8.
An epoch is a full pass of all the training data through mini-batches. In Equation (2-6c), 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖
denotes the initial learning rate. A step-wise decayed learning rate can encourage fast convergence
at the early stage of training and enable fine-tuning on the model parameters at the late stage.

• Parameter initialization

i) Weight and bias

In this study, upon training DCNNs, the weights associated with the convolutional layers, fully
connected layers, and transposed convolutional layers are initialized by the Glorot initializer [100].

Δ𝛉𝛉𝑡𝑡+1 = 𝜀𝜀 ∙ 𝛉𝛉𝑡𝑡 − 𝑟𝑟 ∙

𝜕𝜕𝐸𝐸
𝜕𝜕𝛉𝛉�𝛉𝛉𝑡𝑡,𝑚𝑚𝑡𝑡

 (2-6a)

𝛉𝛉𝑡𝑡+1 = 𝛉𝛉𝑡𝑡 + Δ𝛉𝛉𝑡𝑡+1 (2-6b)

from epoch 2(𝑀𝑀− 1) to 2𝑀𝑀, 𝑟𝑟 = (0.8)𝑀𝑀−1 ∙ 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖, 𝑀𝑀 ∈ ℤ+ (2-6c)

18

This initializer independently samples each weight from a Gaussian distribution with zero mean
and a variance which is related with the dimension of the weights. The initial biases are set as zero.

ii) Scale and shift factor

The scale and shift factor in each batch normalization layer are also updated during training. They
are initialized as 1 and 0, respectively.

2.3.5 Residual Connection

In DCNN-related studies, an intuitive strategy to improve the network performance is to increase
the model capacity by stacking more layers. However, as discovered by some researchers
[82,101,102], increasing the network depth does not always result in improved performance; the
deeper architecture might not outperform its shallower counterpart due to performance degradation
brought by considerably increased network depth. To alleviate such issues in deep architectures,
the concept of residual connection (also known as skip connection) was proposed by [82], as
illustrated by Figure 2-6. The residual connection can improve the network performance by
integrating the hierarchical features from different layers through a shortcut connection, which
facilitates the training process [82]. Also, according to [101], the use of residual connections in
deep architectures can alleviate the issues of singularities in models which slow down the learning
process and lead to performance degradation.

Figure 2-6. Residual connection (redrawn from [82]).

2.4 Laser Image and Measurement System

A laser imaging system, manufactured by AMES Engineering, is adopted to capture both range
(i.e., elevation) and intensity image data from roadway surfaces. Integrated into a survey vehicle,
this laser imaging system consists of three components: a 3D laser camera [Figure 2-7 (a)], a data
acquisition (DAQ) module [Figure 2-7 (b)], and an on-board data processing computer [Figure 2-7
(c)]. The 3D camera is mounted on the rear top of the vehicle. The vertical distance between the
camera module and the ground is 2.13 m (84 inch), such that the camera can capture a 3.96 m (156
inch) wide transverse profile during each scan. The scanned profile contains 4096 pixels, making
the transverse pixel resolution as close to 1 mm/pixel (0.04 inch/pixel). Along the longitudinal
direction, to maintain a uniform longitudinal pixel resolution as 2 mm/pixel (0.08 inch/pixel), the
sampling rate of the DAQ is set at 4856 Hz when the vehicle is driving under 9.83 m/s (22 mph).
The depth resolution of the acquired range image data is 0.1 mm.

19

Figure 2-7. The laser imaging system: (a) vehicle-mounted 3D camera; (b) DAQ module; and (c) data

processing computer.

2.4.1 Measuring Principle

The range and intensity image data are obtained through laser-based 3D triangulation, as illustrated
by Figure 2-8. The laser line projector is positioned perpendicular to the measurement plane, while
the laser camera views the object from an angle. During each scan, a laser line is projected
perpendicular to the roadway surface. By measuring the intensity value at each pixel location, an
intensity profile can be captured. Meanwhile, by interpreting the pixel shifts in the detector view,
as shown in Figure 2-8, the range information at each pixel location can also be calculated through
3D triangulation. A range profile at the same location where the laser line is projected can be
obtained along with the intensity profile. Thus, the acquired range and intensity image data in this
study have pixel-to-pixel location correspondence.

Figure 2-8. Laser-based 3D triangulation.

20

2.5 Performance Evaluation

2.5.1 Precision-Recall Analysis

In binary segmentation study, the number of foreground objects is usually much fewer than that
of background, which is referred to as the class imbalance issue [103]. In the case of crack
segmentation, the ratio between the total number of foreground (i.e., crack) and background (i.e.,
non-crack) pixels is usually quite small. One of the most straightforward and commonly used
metrics, Accuracy, has very poor performance on a class-imbalanced dataset. Accuracy is defined
as the number of correctly identified pixels over all predicted pixels. Given an image where the
majority belongs to the non-crack class, for example, 90%, the Accuracy value will still be as high
as 90% even if all the pixels are predicted as non-crack ones and none of the true crack pixels is
correctly identified. Therefore, the adopted metrics need to be able to address the issue due to class
imbalance.

In this study, the precision-recall analysis [104] is adopted to evaluate the performance of the
proposed crack segmentation methodologies on a class-imbalanced dataset. Three metrics
including the Precision, Recall, and F1 score are included in this analysis, as expressed in Equation
(2-7). In this equation, Precision is defined as the ratio of the number of correctly identified true
crack pixels to the number of pixels predicted as cracks; Recall is defined as the ratio of the number
of correctly identified true crack pixels to the number of true crack pixels; and, F1 score is the
harmonic mean of Precision and Recall, which provides a comprehensive measure on the
segmentation performance.

 Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (2-7a)

 Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
 (2-7b)

 F1 =
2 ∙ Precision ∙ Recall
Precision + Recall

 (2-7c)

where 𝑇𝑇𝑇𝑇 denotes the number of correctly identified true crack pixels; 𝐹𝐹𝑇𝑇 denotes the number of
non-crack pixels that are misidentified as crack pixels; and, 𝐹𝐹𝑁𝑁 denotes the number of true crack
pixels misidentified as non-crack pixels. 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, 𝐹𝐹𝑁𝑁, and 𝑇𝑇𝑁𝑁 (i.e., true negative) are illustrated
in Figure 2-9.

21

Figure 2-9. A schematic diagram to explain the performance metrics.

2.5.2 Intersection over Union

Intersection over union (IOU) [105], also known as the Jaccard index, is commonly used for
performance evaluation in the field of image segmentation. The expression of IOU is formulated
in Equation (2-8), in which the definition of 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, and 𝑇𝑇𝑁𝑁 is the same as defined in Equation
(2-7). As illustrated in Figure 2-9, IOU reflects the degree of overlap between two objects. In this
study, the IOU is evaluated on the “crack” class to provide a measure on the overlap between the
ground truth crack object and predicted crack object.

IOU =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁

 (2-8)

2.5.3 Boundary F1 Score

Other than F1 and IOU, another type of metrics called boundary F1 (BF) score [106] is also
adopted in this study. As implied by the name, the BF score is the F1 score extended to semantic
segmentation, which quantitatively measures the similarity between the boundary (i.e., a contour)
of the ground truth object and that of the predicted object. The BF score varies from 0 to 1, where
the value 1 indicates an exact match between the contours of two objects. The formulation of the
BF score is provided in [106]. In this study, the BF score is calculated on the “crack” class to offer
an additional measure on the similarity between the ground truth of crack and the predicted crack
object.

22

CHAPTER 3: PROPOSED TECHNIQUES

This chapter describes the proposed image-based crack detection techniques to address the
challenges mentioned in section 1.2. The detailed organization is as follows: i) a non-learning-
based technique by using frequency domain filtering is proposed in section 3.1 to address the issues
existing in range image data; ii) in section 3.2, a series of DCNN classifiers with different
hyperparameter configurations are developed, to investigate the impact from hyperparameter
selection on roadway crack classification with range image data; iii) section 3.3 introduces the
proposed DCNN-based crack segmentation technique to achieve pixel-level detection
performance on range image data; and iv) in section 3.4, deep learning-based data fusion
techniques for both crack classification and segmentation are proposed to tackle image data of
real-world complexities and achieve robust detection performance.

3.1 Image Processing Technique for Robust Crack Detection Using Range Image Data

3.1.1 Motivation

One issue with most of the non-learning-based crack detection methods (section 2.1) is that they
usually do not consider crack connectivity and boundary [37], and that they have the drawbacks
as being sensitive to image noises [107]. It is difficult to extract the cracking properties such as
width and area if enclosed crack boundaries are not identified. Instead, contouring analysis can
provide an enclosed boundary for each individual crack identified and offer accurate estimate on
the cracking properties. Contouring analysis is an imaging technique which has been widely used
in geology and oceanology to interpret terrain information [108-111], but it has not been explored
for crack detection. In this study, a boundary extraction algorithm (i.e., marching squares) for
contouring analysis is employed to extract single-level contour candidates for the subsequent crack
detection and classification process. The assumption of applying this image technique for crack
detection is that, cracked regions have different elevations than the surrounding areas. Based on
this assumption, one necessary step before applying the contouring analysis is to ensure the
analyzed image surface is free from i) non-crack surface variations [7], which are usually caused
by rutting [Figure 3-1 (a)], uneven lanes [Figure 3-1 (a)], and ripples due to vertical vibration of
the data acquisition vehicle [Figure 3-1 (b)] [36]; and ii) grooved patterns [Figure 3-1 (c)]. If these
features exist in the data, the application of contouring analysis might lead to misidentification on
surface cracks.

23

Figure 3-1. Surface variations: (a) rutting and uneven lanes; (b) ripples due to vehicle vibration; and (c)

grooved patterns.

Another issue is related with parameter selection in image pre-processing. To facilitate a robust
crack detection via contouring analysis, critical pre-processing steps are required to remove the
surface variations and grooved patterns, which are usually characterized by their unique features
in frequency domain comparing against those of cracks. Existing spatial domain methods,
including histogram transformation [54,112,113], median-filter-based crack enhancement
[52,53,114], and surface fitting [36], are applied for background correction and crack enhancement
purposes, but they often require subjective prior knowledge on parameter selection; meanwhile,
very few studies [32,115] have explored the idea of using frequency domain filtering techniques
on crack detection and removal of surface variations. And yet, rigorous justification in the selection
of the filter parameters is still missing in these studies.

To address these issues, a robust crack detection methodology that utilizes frequency domain
filtering and contouring analysis is proposed. This methodology makes use of range image data to
accurately detect cracks based on their elevation information under realistic field conditions,
including image noises, surface variations, and grooved patterns. More specifically, during image
pre-processing of the original range data, frequency domain filtering is employed to remove
surface variations and grooved patterns and suppress image noises. Unlike most of the non-
learning-based methods which are usually involved with subjective parameter selection, in the
proposed technique, determination on the parameters (e.g., cutoff frequency) is based on a physical
relationship between the crack width and its frequency domain information derived herein. Then,
the contouring analysis is applied to extract cracks from the filtered range surface with enclosed
boundaries. Thus, by proposing this methodology, Challenges 2, 3, and 4 as described in section
1.2, which correspond to the issues of disturbances in range image data, subjectivities from image
pre-processing, and crack boundaries, respectively, can be effectively addressed.

3.1.2 Proposed Methodology

• Flow chart of the proposed crack detection methodology

The flow chart of this methodology is illustrated in Figure 3-2. In the flow chart, blue blocks with
a dashed border represent the existing procedures, and green blocks with a solid border represent

24

the novel procedures developed in the proposed methodology. This methodology first implements
the frequency domain filtering based on a derived relationship between the crack width and cutoff
frequency to remove the inherent issues in the range images including surface variations, image
noises, and grooved patterns; then, the marching squares algorithm is employed to detect single-
level contours thresholded by the crack depth; finally, a set of logics and criteria is developed for
contour qualification and crack classification. Future research effort will be devoted to extracting
cracking features such as crack width from the detected crack contours. The novelty of this
methodology is that it provides a systematic framework to remove the inherent issues in the range
images with less-subjective parameter selection, and that it develops a set of logics and criteria for
effective crack classification on contour-based crack detection.

Figure 3-2. Flow chart of the proposed crack detection methodology.

3.1.3 3D Laser Range Image Data

The proposed crack detection methodology makes use of range image data. The advantages of
using range data over intensity data reside in two aspects: i) when adopting range image for surface
crack detection, cracks are physically associated with the elevation of the surface, where the

25

cracked regions typically have different elevations than their surrounding areas; and ii) using range
data can reduce the influences from varying illumination condition, blemishes, and low contrast
between cracks and surrounding surface. Figure 3-3 illustrates an acquired bridge deck image data
[Figure 3-3 (a)] with its close-up details [Figure 3-3 (b) and(c)], which is captured by the laser
imaging system as introduced in section 2.4.

Figure 3-3. A bridge deck image data with close-up details: (a) bridge deck intensity data; (b) intensity image;

and (c) range image.

3.1.4 Frequency Domain Filtering

In the pre-processing stage, frequency domain filtering techniques are applied to remove surface
variations and suppress image noises. In a digital image, crack edges and image noises mostly
contain high frequency contents; In contrast, surface variations due to rutting, uneven lanes, and
vertical vibration of the data acquisition vehicle (illustrated as Figure 3-1) contain low frequency
contents. The goal of applying frequency domain filtering is, by designing filters with appropriate
parameter settings, the unwanted surface features in crack detection (i.e., noises and surface
variations) can be eliminated effectively; meanwhile, the critical cracking information such as
crack edges is preserved during the filtering process. The Discrete Fourier Transform (DFT) is
applied to the range image data 𝑧𝑧0, to acquire the 2D DFT coefficients 𝑍𝑍0; e.g., the 2D DFT of an
M-by-N (pixels) image can be formulated as Equation (3-1). Then, a comprehensive filtering
process is conducted on the obtained DFT coefficients 𝑍𝑍0 to obtain filtered coefficients 𝑍𝑍1. Finally,
the inverse DFT [formulated as Equation (3-2)] is performed on the filtered coefficients 𝑍𝑍1, to
reconstruct the filtered image surface 𝑧𝑧1.

26

 𝑍𝑍0(𝑘𝑘, 𝑙𝑙) =
1

√𝑀𝑀𝑁𝑁
� �𝑧𝑧0(𝑥𝑥,𝑦𝑦)𝑒𝑒−2𝜋𝜋𝑖𝑖(

𝑘𝑘𝑥𝑥
𝑀𝑀+𝑙𝑙𝑙𝑙𝑁𝑁)

𝑁𝑁−1

𝑙𝑙=0

𝑀𝑀−1

𝑥𝑥=0

 (3-1)

 𝑧𝑧1(𝑥𝑥,𝑦𝑦) =
1

√𝑀𝑀𝑁𝑁
� �𝑍𝑍1(𝑘𝑘, 𝑙𝑙)𝑒𝑒2𝜋𝜋𝑖𝑖(

𝑘𝑘𝑥𝑥
𝑀𝑀+𝑙𝑙𝑙𝑙𝑁𝑁)

𝑁𝑁−1

𝑙𝑙=0

𝑀𝑀−1

𝑘𝑘=0

 (3-2)

where 𝑧𝑧(𝑥𝑥,𝑦𝑦) is the original range data before filtering, with the pixel coordinates 𝑥𝑥 and 𝑦𝑦 ranging
as 0 ≤ 𝑥𝑥 ≤ 𝑀𝑀 − 1 and 0 ≤ 𝑦𝑦 ≤ 𝑁𝑁 − 1; 𝑍𝑍(𝑘𝑘, 𝑙𝑙) is the DFT coefficient, where 𝑘𝑘, 𝑙𝑙 are the row and
column indices with 0 ≤ 𝑘𝑘 ≤ 𝑀𝑀 − 1 and 0 ≤ 𝑙𝑙 ≤ 𝑁𝑁 − 1. The subscripts “0” and “1” indicate the
status as before and after filtering process, respectively.

Figure 3-4. Illustration of a simulated crack: (a) spatial domain; and (b) frequency domain.

• Relationship between crack width and cutoff frequency

To determine the parameters for the frequency filtering process, a physical relationship between
the width of a crack and its frequency domain information is derived herein. A rectangular-shaped
crack is simulated in a flat surface with zero elevation, as illustrated in Figure 3-4 (a); the
mathematical expression of the crack is formulated as Equation (3-3a), where 𝐵𝐵 and ℎ denote the
width and depth of the crack, respectively. Both 𝐵𝐵 and ℎ are in millimeter (mm). It can be shown
that, the Fourier transform of Equation (3-3a) is expressed as Equation (3-3b). Subsequently, the
magnitude of the Fourier transform is formulated as Equation (3-3c), which is illustrated in Figure
3-4 (b). By letting Equation (3-3c) equal to zero [see Equation (3-3d)], the frequency bandwidth
within ± 1

𝐵𝐵
 cycle/mm (i.e., the main lobe) is obtained as the bandwidth where most of the image

energy is located. This frequency bandwidth is indicated by the range constrained within the red

27

dashed lines in Figure 3-4 (b). Therefore, when designing a low-pass filter to suppress image noise
whilst preserving this crack, the corresponding cutoff frequency can be set as 1

𝐵𝐵
 cycle/mm, i.e.,

inversely proportional to the crack width 𝐵𝐵. This relationship illustrates the cutoff frequency can
be physically associated with the crack width. By assigning such a cutoff frequency, majority of
the image energy associated with the crack shape, which concentrates at the main lobe, resides in
the frequency pass band. Likewise, based on this relationship, the maximum and minimum width
of the cracks preserved through the filtering can be achieved by properly assigning the cutoff
frequencies of the high-pass and low-pass filter, respectively.

 𝑓𝑓(𝑥𝑥) = −ℎ ∙ rect �
𝑥𝑥 − 𝐵𝐵𝑐𝑐
𝐵𝐵

� (3-3a)

 ℱ(𝜉𝜉) = � 𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑥𝑥𝑑𝑑𝑥𝑥
∞

−∞
= −ℎ𝐵𝐵 ∙ sinc(𝜉𝜉𝐵𝐵) ∙ 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝐵𝐵𝑐𝑐 (3-3b)

 |ℱ(𝜉𝜉)| = ℎ𝐵𝐵 ∙ |sinc(𝜉𝜉𝐵𝐵)| = ℎ𝐵𝐵 ∙ �
sin(𝜋𝜋𝜉𝜉𝐵𝐵)
𝜋𝜋𝜉𝜉𝐵𝐵

� (3-3c)

 |ℱ(𝜉𝜉)| = 0, at 𝜉𝜉 = ± 𝑖𝑖
𝐵𝐵

, 𝑖𝑖 ∈ ℤ+ (3-3d)

in Equation (3-3a), 𝑓𝑓(𝑥𝑥) denotes the rectangular-shaped crack function; ℎ is the crack depth; 𝑥𝑥 is
the coordinate in length; 𝐵𝐵𝑐𝑐 is the horizontal offset from the origin, and 𝐵𝐵 denotes the crack width;
ℎ, 𝑥𝑥, 𝐵𝐵𝑐𝑐, and 𝐵𝐵 carry the same physical unit as mm; rect(∙) is the rectangular function, defined in
Equation (3-4a). In Equation (3-3b), ℱ(𝜉𝜉) denotes the Fourier transform, where 𝜉𝜉 is the frequency;
sinc(∙) is the normalized sinc function, defined in Equation (3-4b).

 rect(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧0 𝑖𝑖𝑓𝑓 |𝑡𝑡| >

1
2

1
2

𝑖𝑖𝑓𝑓 |𝑡𝑡| =
1
2

1 𝑖𝑖𝑓𝑓 |𝑡𝑡| <
1
2

 (3-4a)

 sinc(𝑡𝑡) =
sin (𝜋𝜋𝑡𝑡)
𝜋𝜋𝑡𝑡

 (3-4b)

• Choice of filters

On the choice of filters for the proposed frequency domain filtering, three types of image filters
including the Ideal filter, the Butterworth filter, and the Gaussian filter [116] have been considered.
The Ideal filter has a sharp transition between the pass band and stop band, producing ripples
known as the ringing artifact [116] near the sharp edges of the filtered spatial domain image. Such
ringing artifact is often undesirable and will cause detrimental effects on the subsequent crack
detection. The Butterworth filter has a smoother transition band compared with the Ideal filter,

28

which helps reduce the ringing artifact. The Gaussian filter has the identical non-oscillatory form
in both the spatial and frequency domain [117], thus does not incur any ringing artifact in the
filtered image.

Figure 3-5. Zoomed-in views: (a) the filtered crack surface; (b) the edge of the filtered crack; and (c) the

bottom of the filtered crack.

To demonstrate their performance on preserving the cracking information, the above low-pass
filters are applied to the simulated cracked surface [Figure 3-4 (a)], and the filtering results are
demonstrated in Figure 3-5. According to the derived relationship between the crack width and its
frequency domain information, the cutoff frequency for the low-pass filters is selected as 1

𝐵𝐵

cycle/mm. In Figure 3-5 (a), the original cracked surface is compared with the surfaces filtered by
the Ideal filter, the Gaussian filter, and the Butterworth filters with different orders. It can be
observed from Figure 3-5 (a), that all three types of filters are capable of preserving the crack by
assigning the cutoff frequency based on the derived relationship. However, as can be observed
from the zoomed-in view in Figure 3-5 (b), the Ideal filter incurs ringing artifact on the crack edge.
In addition, ringing starts to appear on the surfaces filtered by the Butterworth filters with order
≥ 3, but it is less obvious than that incurred by the Ideal filter. Meanwhile, no ringing artifact is
produced in the filtered surface using the Gaussian filter. From both the Figure 3-5 (b-c), as the
order of the Butterworth filter increases, the shape of the filtered crack approaches to that by the
Ideal filter. At lower order (𝑛𝑛 = 1, 2), the Butterworth filters do not cause ringing in the filtered
surface, showing similar performance with the Gaussian filter. But, it is worth noting that, by

29

applying the Ideal filter and the Butterworth filter with order ≥ 2, the filtered crack depth is
undesirably exaggerated [Figure 3-5 (c)].

In short, all three types of filters are capable of preserving the crack by properly assigning the
cutoff frequency according to the derived relationship; among these filters, the Gaussian filter
neither produces ringing artifacts in the filtered surface, nor exaggerates the depth of the filtered
crack, unlike what the other two types of filters do. Although the above findings are obtained using
the low-pass filter as a demonstration example, the ringing behavior in the transition band and the
magnitude mismatch observed for the ideal filter and the Butterworth filter are also applicable in
the high-pass and the notch filter cases [117]. Based on the above findings, the Gaussian filter is
utilized in the filtering process in this study.

• High-pass filtering to eliminate surface variations

Road surface usually contains variations caused by rutting, uneven lanes, and vertical vibration of
the data acquisition vehicle, as illustrated in Figure 3-1. The existence of these surface variations
might deteriorate the crack detection performance. Conventional methods such as median filtering
[52,53,114] and surface fitting [36] are adopted for background correction and crack enhancement
purposes, but they often require subjective parameters (e.g., kernel size of the spatial domain
filters). The frequency domain filtering applied in this methodology, however, follows the physical
relationship between the frequency domain information and crack width to determine the filter
parameters (e.g., cutoff frequency). Therefore, the proposed frequency domain filtering can
provide robust and consistent results in practice and is independent from images or operating
personnel.

In this study, the Gaussian high-pass image filter is selected to eliminate the low frequency surface
variations, because it does not incur ringing artifacts in the filtered surface, due to its identical non-
oscillatory form in both the frequency and spatial domain. The Gaussian high-pass image filter is
expressed as Equation (3-5). The formulation is modified from that in [116] to account for the
possible different pixel resolutions during 2D filtering of image data.

𝐻𝐻ℎ(𝑢𝑢, 𝑣𝑣) = 1 − 𝑒𝑒

−

𝑢𝑢2
𝑝𝑝𝑢𝑢2
+𝑣𝑣

2

𝑝𝑝𝑣𝑣2

2𝐷𝐷ℎ
2

(3-5)

where 𝐻𝐻ℎ denotes the Gaussian high-pass filter; 𝑢𝑢, 𝑣𝑣 are the spectral coordinates along
longitudinal and transverse direction, respectively, ranging from – 1

2
 to 1

2
 cycle/pixel; 𝑝𝑝𝑢𝑢 and 𝑝𝑝𝑣𝑣 are

the pixel resolutions (unit: mm/pixel) along longitudinal and transverse direction, respectively;
𝐷𝐷ℎ = 1

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
 (unit: cycle/mm) is the high-pass cutoff frequency, where 𝐵𝐵𝑚𝑚𝑚𝑚𝑥𝑥 (unit: mm) is the

maximum width of the cracks to be detected.

• Low-pass filtering to suppress image noises

Image noises can occur during image acquisition, coding, transmission, and processing stage, and
are usually shown as random variations of brightness or color [118]. On roadway surface, noises
created by varying illumination condition, shadows, blemishes, concrete spall, etc., often bring

30

difficulties in image-based crack detection [119]. Therefore, one critical step in image pre-
processing is to suppress the image noises for improved crack detection performance. Noise is
usually manifested as the high frequency content in an image, because it involves sharp changes
in brightness or color. Based on the findings in section 3.1.4, the Gaussian low-pass image filter,
expressed as Equation (3-6) [116], and modified similarly as Equation (3-5), is applied to suppress
the high frequency image noises in this study.

𝐻𝐻𝑙𝑙(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒

−

𝑢𝑢2
𝑝𝑝𝑢𝑢2
+𝑣𝑣

2

𝑝𝑝𝑣𝑣2

2𝐷𝐷𝑙𝑙
2

(3-6)

in the above expression, 𝐻𝐻𝑙𝑙 denotes the Gaussian low-pass filter; 𝐷𝐷𝑙𝑙 = 1
𝐵𝐵𝑚𝑚𝑖𝑖𝑚𝑚

 (unit: cycle/mm) is the
low-pass cutoff frequency, where 𝐵𝐵𝑚𝑚𝑖𝑖𝑛𝑛 (unit: mm) is the minimum width of the cracks to be
detected.

• Multiple notch filtering to remove grooves

Groove is a non-crack periodic pattern of a uniform depth, width, and shape on roadway surface.
Surface grooving is an effective means to increase road traction as well as prevent vehicle sideways
skidding, reduce hydroplaning, and provide effective braking surface [120-122]. However, in the
presence of grooves, detection of cracks is particularly difficult, as the cracks have similar
appearance to the grooves [123]. For example, grooves are often misidentified as cracks in the
process of crack detection, because the groove width and depth are similar to those of cracks [124].
Figure 3-6 (a) illustrates a longitudinal grooved pattern in a cracked surface. In frequency domain,
this periodic pattern shows as frequency harmonics [Figure 3-6 (b)], which can be effectively
removed by applying notch filtering. A Gaussian multiple notch filter is designed in this
methodology to remove grooved patterns in the image surface. The choice to adopt the Gaussian
filter for notch filtering is for the same reason described in section 3.1.4. By implementing the
multiple notch filter (Figure 3-7), the grooves can be effectively eliminated without losing cracking
information. The Gaussian multiple notch filter proposed in this study is expressed as Equation
(3-7).

31

Figure 3-6. Grooves in a cracked surface: (a) spatial domain; and (b) frequency domain.

Figure 3-7. Multiple notch filter.

 𝐻𝐻𝑛𝑛(𝑢𝑢, 𝑣𝑣) = �

⎣
⎢
⎢
⎡
1 − 𝑒𝑒

−

(𝑢𝑢−𝑞𝑞𝐹𝐹0𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠)2
𝑝𝑝𝑢𝑢2

+(𝑣𝑣−𝑞𝑞𝐹𝐹0𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠)2
𝑝𝑝𝑣𝑣2

2𝐷𝐷𝑚𝑚2

⎦
⎥
⎥
⎤𝑄𝑄

𝑞𝑞=−𝑄𝑄, 𝑞𝑞≠0

 (3-7)

where 𝐻𝐻𝑛𝑛 denotes the Gaussian multiple notch filter; 𝑞𝑞 is a non-zero integer ranging from −𝑄𝑄 to
𝑄𝑄, where 𝑄𝑄 refers to the number of frequency harmonics to be removed; 𝐹𝐹0 = 1

𝑔𝑔
 is the fundamental

frequency, where 𝑔𝑔 (unit: mm) denotes the groove spacing; 𝐷𝐷𝑛𝑛 denotes the frequency radius of
each circle-shaped notch filter (Figure 3-7); 𝜃𝜃 denotes the orientation of the grooved pattern,
measured counterclockwise with respect to the longitudinal direction; for longitudinal groove, 𝜃𝜃 =
0°; for transverse groove, 𝜃𝜃 = 90°.

32

3.1.5 Crack Detection Based on Contouring Analysis

Conventional edge detection techniques have the drawbacks as being very sensitive to image
noises [107]. Moreover, they do not consider crack connectivity and boundary [37], bringing
difficulties to extracting each individual crack. The contouring analysis adopted in this
methodology, however, can detect an enclosed crack boundary, lending itself to accurate
estimation on cracking properties such as area, perimeter, etc. In an illustrative example shown as
Figure 3-8, a crack is detected by both Canny edge detection [Figure 3-8 (a)] and the contouring
analysis [Figure 3-8 (b)]. It is worth noting that in Figure 3-8 (b), the detected contour is
superimposed on the cracked range surface. While discontinuities [circled in red in Figure 3-8 (a)]
in crack boundary are observed in Canny edge detection result, an enclosed crack boundary [shown
as a black contour in Figure 3-8 (b)] is accurately extracted by using the contouring analysis. The
assumption of using the contouring analysis for surface crack detection is that, surface cracks have
different elevations than their surrounding areas. This assumption, however, has a limitation that
the performance might be deteriorated when detecting shallow cracks where the reduction of
elevation is not significant enough.

Figure 3-8. A crack detection example using Canny edge detection and the contouring analysis: (a) detected

crack by Canny edge detection; and (b) detected crack by the contouring analysis.

• Marching squares algorithm for contour detection

In the proposed methodology, a popular and extensively used computer algorithm for boundary
detection (i.e., marching squares [125-127]) is employed to extract crack contour candidates from
the image surface. The marching squares algorithm gives a piece-wise approximation to the
boundary of a 2D object. First, the image is represented by a grid of 2-by-2 pixel cells. This method
analyzes the local properties of each cell, which has a finite set of cell configurations [126]. Then,
the object can be enclosed by these cells through linear interpolation over the cell interval.

The parameters in the marching squares algorithm are the contour levels. In this methodology, a
single contour level is set based on the crack depth to be detected. In this study, the crack depth is
determined as ℎ = −1 𝑚𝑚𝑚𝑚. In civil engineering practice, the crack depth to be detected can be
determined by road survey companies or state transportation agencies.

33

It is worth noting that applying such a boundary detection algorithm alone will yield erroneous
crack detection result, because: i) without a proper filtering process to remove the surface
variations, the determination of the single contour level is dependent on the elevation of the image
surface rather than the crack depth to be detected; and ii) additional logics and criteria are required
to distinguish the crack contours from non-crack contours such as noise-induced small contours
and pothole contours.

• Contour qualification and crack classification

As illustrated in Figure 3-2, after the contours are extracted from the filtered image surface using
the marching squares algorithm, a set of logics and criteria is developed in this methodology for
crack detection and classification purpose. The detailed four-step procedure is explained as below:

Figure 3-9. Different contour scenarios (the shaded areas indicate lower elevation than the contour level).

i) Enclose the contours intersecting with image boundary

The contours that have intersections with the image boundary will not be enclosed, as shown in
Figure 3-9. Therefore, a criterion is developed to address this issue: if the starting and end contour
points of a contour lie in the image boundary, then these two points are connected to produce an
enclosed boundary.

ii) Extract the contour properties

The contour properties including area, perimeter, and centroid are calculated for further analysis.

iii) Remove the contours with small area

Despite the low-pass filtering process, a few remnant image noises still exist in the filtered range
image. Such image noises might be detected as small contours, as shown in Figure 3-9. By using

34

Equation (3-8), the small contours due to image noises can be removed. In this equation, 𝐴𝐴𝑖𝑖 is the
area of the 𝑖𝑖𝑡𝑡ℎ contour candidate, and 𝑡𝑡𝑡𝑡𝑙𝑙1 is the tolerance value for the smallest contour area. The
value of 𝑡𝑡𝑡𝑡𝑙𝑙1is a tradeoff between computational efficiency and detection performance. In this
study, the choice of 𝑡𝑡𝑡𝑡𝑙𝑙1 = 100 mm2, determined through experiments on a large set of range
image data, successfully ensures the removal of the majority of noise-induced small contours, as
can be illustrated through the subsequent experimental study. In practice, the tolerance value can
be determined by road survey companies or state transportation agencies.

Criterion 1: small contours are removed upon meeting this criterion

𝐴𝐴𝑖𝑖 < 𝑡𝑡𝑡𝑡𝑙𝑙1
(3-8)

iv) Crack classification

The crack classification is performed to distinguish the real cracks from those non-crack contours
(Figure 3-9). Surface cracks usually have slender shapes; therefore, it is reasonable to distinguish
the crack and non-crack contours based on this attribute. Equation (3-9) is proposed to disqualify
the contours with non-slender shapes. In this equation, 𝑝𝑝𝑖𝑖 denotes the perimeter of the 𝑖𝑖𝑡𝑡ℎ contour.

Criterion 2: Non-slender contours are removed upon meeting this criterion

4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖2

> 𝑡𝑡𝑡𝑡𝑙𝑙2
(3-9)

Generally, the value of 4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2 in Equation (3-9) reduces as a contour becomes slenderer in shape. For

example, if a rectangular-like contour has little width with respect to its height, then the value of
4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2 becomes very small, and Equation (3-9) will not hold. As a result, the corresponding contour

will be identified as a real crack. For a square-shaped contour, 4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2 =0.25; for a round-shaped

contour which resembles a pothole (Figure 3-9), this value is equal to 1
𝜋𝜋
≈0.3. In this study, the

threshold value 𝑡𝑡𝑡𝑡𝑙𝑙2 = 0.2, determined through experiments on a large set of range image data;
and, this choice has enabled successful crack detection in the subsequent experimental study. In
practice, this threshold value can also be determined by road survey companies or state
transportation agencies.

3.2 Deep Learning-Based Crack Classification

3.2.1 Motivation

Despite many successful developments of DCNN-based methods on crack detection as reviewed
in section 2.2.2, some issues have yet to be properly addressed. One issue is related with the image
data. Albeit the high adaptability of DCNN, directly applying this type of methods to realistic
situations can still be very difficult, due to the high irregularity and complexity in the image data.

35

Therefore, it is common to employ image pre-processing to reduce the image complexity by noise
removal and crack enhancement, as adopted by many DCNN-based methods [30,41,42]. However,
it is more practical and preferable to directly learn from the raw data (possibly noise-contaminated)
upon applying DCNN for crack detection to avoid additional human intervention. Moreover,
typical non-crack patterns including grooves, pavement edges, and shoulder drop-offs can be
misidentified as cracks due to their similarities, resulting in deterioration of the crack detection
performance, as reported by [30]. Thus, it remains a challenge even for DCNN-based crack
detection methods to reach consistent performance when directly using raw data with possible
image contaminations.

Another issue lies in the DCNN architecture. It is critical to determine the design configurations
and training strategies for a crack classification DCNN architecture. For example, selection of the
hyperparameters related with network structure (e.g., kernel size, network width and depth) and
training (e.g., mini-batch size and learning rate) can impact the accuracy and efficiency of the
DCNN architecture up to a significant extent. Faghih-Roohi, et al. [128] implemented three DCNN
architectures (small, medium, and large in terms of network width and depth) with various
combinations of hyperparameters for detection of defects on rail surfaces. They observed that the
large model outperformed the rest by a margin of 0.5% on both the accuracy and F1 score [104],
but it required a longer computational time. Pauly, et al. [129] evaluated the performance metrics
by varying the network depth, and they showed that the network with a deeper architecture led to
up to a 2% improvement on the detection accuracy. Tong, et al. [30] compared the classification
performance on range image data between the CrackNet II and its three variants differing in the
size of the kernels. The CrackNet II with smallest kernel sizes had a 20% higher F1 score than the
one with the largest kernel sizes. They concluded that increasing kernel size resulted in worse
performance.

As to the selection of the hyperparameters for training, it has been reported that the process of
configuring and choosing adequate hyperparameters is quite tedious, and no exact guidelines for
those hyperparameter optimizations are available [39]. The design process of an ideal DCNN
architecture for a task (i.e., crack classification in this context) must be conducted via
experimentation guided by monitoring the validation set error [38]. Nevertheless, partially due to
the lack of publicly available laser-scanned roadway range image datasets with high diversities
(e.g., grooved patterns, various crack patterns), there is very few study discussing the impact from
hyperparameter selection upon applying DCNN-based crack classification on this specific type of
data.

To address the above issues and promote a practical and robust solution for deep learning-based
roadway crack classification on laser-scanned range images, the proposed methodology
investigates the influence from hyperparameter selection through experiments on range image data
of high diversity and irregularity. A series of DCNN classifiers with varying hyperparameter
configurations in terms of their architecture layouts and training settings are developed and
evaluated through quantitative measures. Among a family of 36 proposed DCNN classifiers, the
optimal architecture that can best describe and reflect the complexity of the laser-scanned roadway
images by achieving the highest classification performance is thus determined. The proposed
classifier does not require any pre-processing on the raw range images, therefore it is robust against

36

image noises and non-crack patterns such as grooves, pavement edges, and shoulder drop-offs.
The contribution of the proposed methodology is three-folded:

i) A hyperparameter selection process is developed for DCNN-based roadway crack
classification using laser-scanned range images. Consistent observations regarding the impact
from hyperparameter selection are observed upon evaluating the DCNN performance on range
image data of high complexities. And, the conclusions can provide prior knowledge for DCNN
designs in similar applications using laser-scanned roadway range images;

ii) The optimal architecture with associated training configuration determined through the
hyperparameter selection process can achieve accurate and robust classification performance on
different range image datasets with diverse patterns and image disturbances;

iii) A laser-scanned roadway range image dataset (LRRD) [130] on asphalt and concrete
pavements is collected and made publicly available to benefit the community.

Thus, through this methodology, Challenge 5 (section 1.2) regarding the issue of hyperparameter
selection can be properly tackled. Besides, as this proposed methodology directly exploits raw
range image rather than filtered image data for analysis, it also addresses Challenges 2 and 3 by
introducing robustness to the crack detection.

3.2.2 Proposed Methodology

• Proposed DCNN architecture

One of the objectives in this study is to explore the impacts from varying hyperparameters on the
network performance, and then determine the optimal hyperparameter configuration through a
series of experiments. Thus, multiple DCNN architectures with different layouts/specifications are
investigated. For example, the candidate shown in Figure 3-10 is a 7-layer architecture (No. 25 in
Table 4-3) which is analyzed in the experimental cases. In this figure, L1 through L6 are
convolutional blocks, and L7 is a fully connected layer; “BN” and “LReLU” in the convolutional
blocks represent batch normalization layer and leaky rectified linear unit (LReLU) layer,
respectively; “Dropout” refers to a dropout layer to prevent overfitting and improve generalization;
“Softmax” corresponds to a softmax normalization layer. In this example, the convolutional blocks
L1 through L5 use convolutional kernels with a stride of 2 for feature extraction; in L6, 1×1
convolutional kernels with a stride of 1 are used for cross channel pooling. Zero paddings are
assigned to produce output feature maps with a desired dimension. The definitions of these
network layers can be found in section 2.3.1. The proposed DCNN classifier predicts the input raw
range images as whether containing cracks or not. Detailed specifications on the network
architecture are tabulated in Table 4-3.

37

Figure 3-10. A DCNN architecture candidate for performance evaluation.

• Hyperparameter selection

Hyperparameters in a neural network are the variables which are determined prior to training; in
contrast, the parameters including weights and biases in a network are updated during training.
The hyperparameters can be mainly categorized into two types: those related with network
structure, and those related with training. This section describes the hyperparameters investigated
in this study.

i) Hyperparameters related with network structure

Hyperparameters such as kernel size, stride, network width (i.e., number of kernels in each
convolutional layer), and network depth (i.e., number of layers) determine the layout of a
convolutional neural network. As explained in section 3.2.1, different configurations on these
hyperparameters can vary the network performance to a significant level. For example, by
increasing the network depth, a neural network can learn more complex features, but meanwhile
it might be more compute-intensive and can potentially suffer from overfitting. Therefore, these
hyperparameters need to be properly selected through experiments. In this methodology, an
experimental study is designed to explore the impacts from three hyperparameters, which are
kernel size, network width, and network depth. It has been reported in the literature [30,128,129]
that these three hyperparameters have a notable influence on the network performance. Case I of
the experimental study, which will be introduced later, compares the performance of different
architectures with varying kernel sizes, network widths, and network depths. Based on the
comparison, the optimal hyperparameter configuration that yields the most efficient and accurate
classification performance is determined.

ii) Hyperparameters related with training

In this study, the mini-batch SGD with momentum algorithm, as described in section 2.3.4, is
adopted as the optimization technique. Thus, several hyperparameters including weight decay
factor, momentum, number of epochs, mini-batch size, learning rate and learning rate drop factor,
dropout factor, and LReLU factor are involved in the training process. While no exact guidelines

38

are available for configuring and choosing these hyperparameters [39] for crack classification tasks,
Case II of this experimental study focuses on investigating the optimal joint specification of the
following hyperparameters: mini-batch size, learning rate, dropout factor, and LReLU factor. In
Case II, to confine the discussion to these hyperparameters, the values of the other hyperparameters
such as weight decay are fixed to be the same as used in other successful applications [30,39].

• Flow chart of the proposed DCNN-based crack classification methodology

The flow chart of the proposed DCNN-based crack classification methodology which contains a
two-step procedure (i.e., training and prediction) is illustrated in Figure 3-11. First, the proposed
DCNN classifier is trained and validated on range image data; then, the trained classifier is utilized
for crack classification on new datasets. By using the sliding window technique as introduced in
section 2.3.2, the collected pavement image is cropped into many patches with smaller sizes, which
reduces computational cost during training. Meanwhile, each cropped image patch carries not only
the image feature but also location information. Once the image patches are predicted by the
DCNN classifier, an inverse operation of the sliding window technique restores each patch to its
original location, indicating the corresponding region as containing cracks or not. Thus, a crack
map containing crack location information can be generated.

Figure 3-11. Flow chart of the proposed crack detection methodology based on range images and DCNN.

3.3 Deep Learning-Based Crack Segmentation

3.3.1 Motivation

As reported in section 2.2.2, a majority of current DCNN-based crack segmentation applications
only used intensity images for training, thus their performance may potentially deteriorate due to
disturbances in intensity image data such as shadows, uneven lighting condition [19], oil spills and
blemishes [29,131].

39

In the recent decade, researchers explored laser-scanned range image data for crack detection,
relying on the elevation difference between cracks and non-crack regions to interpret the presence
of cracks [19]. Zhang, et al. [42], Tong, et al. [30], and Fei, et al. [40] developed CrackNet and its
variants, which are DCNNs trained and tested on laser-scanned range images, for roadway crack
segmentation. However, while this type of image data has promising advantages over traditional
intensity images such as being insensitive to changing illumination, it also suffers from issues
including surface variations and non-crack patterns (e.g., grooves), which need to be properly
addressed prior to crack detection [7,29]. In fact, due to these real-world complexities in range
image data, most of the current DCNN-based crack segmentation methods [30,40,42] still employ
image pre-processing (e.g., surface flattening, median filtering) on range images for crack
enhancement. Besides, as stated in [30], issues due to non-crack patterns such as grooved patterns
can deteriorate the segmentation performance, where the CrackNet II misidentified some grooves
in concrete surfaces as cracks. The grooved pattern is a man-made pattern with a uniform depth,
width, and shape on roadway surfaces to increase traction and resist sideways skidding. Because
pavement grooves often possess similar features as cracks, such as width and depth, they can bring
additional disturbances and uncertainties to image-based crack detection [29]. For current DCNN-
based crack segmentation methods using roadway range images, it remains a challenge to achieve
consistent and robust segmentation performance under the contamination of grooves.

A novel methodology is proposed based on encoder-decoder DCNNs for pixel-wise crack
classification on roadway range images, under possible contamination of disturbances, such as
surface variations and grooved patterns. Its contributions can be summarized in the following
aspects:

i) The proposed DCNN methodology utilizes range images for roadway crack segmentation,
and it does not require any image pre-processing techniques to address the image issues including
surface variations and pavement grooves;

ii) A series of encoder-decoder networks are proposed and evaluated through a comparative
study to investigate the impacts on crack segmentation performance; through the comparative
study, the influence of residual connections on DCNN-based crack segmentation using roadway
range images is demonstrated;

iii) The optimal architecture determined in this study can achieve robust and consistent
segmentation performance on laser-scanned roadway range images contaminated by image
disturbances such as surface variations and grooved patterns.

By achieving the above contributions by this DCNN-based crack segmentation methodology, the
issues as described in Challenge 6 in section 1.2 can be properly addressed.

3.3.2 Proposed Methodology

A set of encoder-decoder networks with varying network depths and residual connections are
proposed in this study for comparison. It is noted that, the impacts of residual connections (section
2.3.5) on crack segmentation performance of DCNNs using laser-scanned roadway images, which

40

has not been thoroughly investigated in literature, are demonstrated and evaluated in the
experimental section.

Six encoder-decoder networks, denoted as Net-1 through 6, with gradually increased network
depths, are proposed for crack segmentation. Meanwhile, the number of residual connections in
these proposed encoder-decoder networks increases from 1 to 6, correspondingly.

To isolate the influences from increasing network depth and from adding residual connections, an
additional series of six “plain” counterparts (i.e., without residual connections) of Net-1 through 6
are constructed for comparison.

• Encoder-decoder networks with residual connections

Six encoder-decoder networks with residual connections, denoted as Net-1 through 6, are proposed
in this study. In Figure 3-12 which displays their basic layout, the red dashed box represents
architecture-specific layers which are further illustrated in Figure 3-13 (a-f), respectively, for Net-
1 through 6. As shown in these two figures, the encoder consists of multiple convolutional blocks
for feature extraction. Each convolutional block consists of a 2×2 max pooling layer with a stride
of 2 for down-sampling, a 3×3 convolutional layer which adopts 3×3 kernels with a stride of 1
and padding of 1 for feature extraction, a batch normalization layer to improve model
generalization, and a LReLU layer to add nonlinearity. For each transposed convolutional block
in the decoder, a 3×3 transposed convolutional layer utilizing 3×3 kernels with a stride of 2 and
cropping of 1 is adopted for up-sampling, followed by a batch normalization and LReLU layer.
The 1×1 convolutional layer performs cross-channel pooling to produce an output map of a desired
depth. The softmax layer placed at the end produces a probability map for each input image. The
output dimension is shown along with each layer. In each architecture displayed in Figure 3-12
combined with Figure 3-13, low-level features extracted from the encoder are added to high-level
features generated by the decoder through residual connections. These six architectures (Net-1
through 6) have different model complexities, represented by the increased network depths and
associated number of parameters as shown in Table 3-1.

41

Figure 3-12. Overall layout of the proposed DCNN architectures for semantic segmentation.

Table 3-1. Detailed configurations of the proposed architectures.

*: total number of the convolutional and transposed convolutional layers.

Index Net
name

Network
depth*

Residual
connection

Number of residual
connections

Number of
parameters (×106)

1 Net-1 6 √ 1 0.45
2 Net-2 8 √ 2 1.93
3 Net-3 10 √ 3 7.84
4 Net-4 12 √ 4 31.45
5 Net-5 14 √ 5 88.10
6 Net-6 16 √ 6 163.61
7 Net-1A 6 × N/A 0.45
8 Net-2A 8 × N/A 1.93
9 Net-3A 10 × N/A 7.84
10 Net-4A 12 × N/A 31.45
11 Net-5A 14 × N/A 88.10
12 Net-6A 16 × N/A 163.61

42

Figure 3-13. Hidden layers of the proposed architectures: (a-f) Net-1 through 6.

43

• Encoder-decoder networks without residual connections

In addition to Net-1 through 6, another six architectures denoted as Net-1A through 6A are
constructed as their “plain” counterparts (see Table 3-1), which have the same layer configurations
except they do not contain any residual connections. Thus, through a comparison between each
network and its “plain” counterpart, the effect from residual connections on crack segmentation
performance can be demonstrated. Figure 3-14 shows the architecture of Net-4A as an illustrative
example. The detailed layer configuration for Net-4A is tabulated in Table 3-2. For concision,
similar configuration information for the other architectures is not presented in this study.

Figure 3-14. Net-4A: a counterpart of Net-4 (without residual connections).

44

Table 3-2. Detailed layer configuration of Net-4A.

*: padding is performed on all boundaries; cropping is performed on bottom and right boundaries.

**: INPUT: image input layer; MaxPool: max pooling layer; CONV: convolutional layer; BN: batch
normalization layer; LReLU: leaky rectified linear unit; TransCONV: transposed convolutional layer;
SOFTMAX: softmax normalization layer.

Layer
name

Layer
type**

Output
dimension

Kernel
size

Depth Stride Padding* Cropping* Learnable parameters

Input INPUT 256×256×1 - - - - - -
MP1 MaxPool 128×128×1 2×2 - 2 0 - -
Conv1 CONV 128×128×128 3×3×1 128 1 1 - weight 3×3×1×128 bias 1×128
BN1 BN 128×128×128 - - - - - scale 1×128 shift 1×128
LReLU1 LReLU 128×128×128 - - - - - -
MP2 MaxPool 64×64×128 2×2 - 2 0 - -
Conv2 CONV 64×64×256 3×3×128 256 1 1 - weight 3×3×128×256 bias 1×256
BN2 BN 64×64×256 - - - - - scale 1×256 shift 1×256
LReLU2 LReLU 64×64×256 - - - - - -

MP3 MaxPool 32×32×256 2×2 - 2 0 - -
Conv3 CONV 32×32×512 3×3×256 512 1 1 - weight 3×3×256×512 bias 1×512
BN3 BN 32×32×512 - - - - - scale 1×512 shift 1×512
LReLU3 LReLU 32×32×512 - - - - - -
MP4 MaxPool 16×16×512 2×2 - 2 0 - -
Conv4 CONV 16×16×1024 3×3×512 1024 1 1 - weight 3×3×512×1024 bias 1×1024
BN4 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
LReLU4 LReLU 16×16×1024 - - - - - -
MP5 MaxPool 8×8×1024 2×2 - 2 0 - -
Conv5 CONV 8×8×2048 3×3×1024 2048 1 1 - weight 3×3×1024×2048 bias 1×2048
BN5 BN 8×8×2048 - - - - - scale 1×2048 shift 1×2048
LReLU5 LReLU 8×8×2048 - - - - - -

1×1Conv1 CONV 8×8×2 1×1×2048 2 1 0 - weight 1×1×2048×2 bias 1×2
TConv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024
BN6 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
LReLU6 LReLU 16×16×1024 - - - - - -
TConv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512
BN7 BN 32×32×512 - - - - - scale 1×512 shift 1×512
LReLU7 LReLU 32×32×512 - - - - - -

TConv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256
BN8 BN 64×64×256 - - - - - scale 1×256 shift 1×256
LReLU8 LReLU 64×64×256 - - - - - -
TConv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128
BN9 BN 128×128×128 - - - - - scale 1×128 shift 1×128
LReLU9 LReLU 128×128×128 - - - - - -
TConv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128
BN10 BN 256×256×128 - - - - - scale 1×128 shift 1×128
LReLU10 LReLU 256×256×128 - - - - - -

1×1Conv2 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2
Softmax SOFTMAX 256×256×2 - - - - - -

 Sum 31450116

45

• Flow chart of the proposed DCNN-based crack segmentation methodology

Figure 3-15 illustrates the flow chart of the DCNN-based crack segmentation methodology
proposed in this study, which is comprised of two phases: i) DCNN training; and ii) DCNN
prediction. In DCNN training, first, range images are acquired from roadways; then, image patches
with a dimension of 256×256 pixels are produced through the sliding window technique (section
2.3.2); ground truth labels are generated for the image patches containing cracks; finally, the
cracked image patches with their ground truth labels are augmented and then utilized for DCNN
training. Once the DCNN is trained, it can be used in the second phase, which is DCNN prediction.
During prediction, new image data is acquired from roadway surfaces, cropped into patches using
the sliding window technique; then, crack maps with pixel-wise resolution are generated by the
DCNN for the image patches; finally, through an inverse operation of the sliding window
technique, a crack map for the roadway image is reconstructed.

Figure 3-15. Flow chart of the proposed DCNN-based crack segmentation methodology.

46

3.4 Deep Learning-Based Data Fusion for Crack Detection

3.4.1 Motivation

As reviewed in section 2.2.2, current DCNN-based crack segmentation methods either used
intensity or range image for analysis. Depending on the image type, crack detection methodologies
may suffer from issues such as uneven illumination and low contrast in intensity images or surface
variations and grooved patterns in range images. For example, as observed in [30], grooved
patterns in concrete pavements resulted in false-positive detections. Besides, to resolve the
disturbances existing in either type of image data, image pre-processing techniques such as
background correction [41], line filtering [42], surface flattening [30], and median filtering [40]
are adopted prior to DCNN training and testing. However, in practice, it is often unclear about the
appropriate choices of the parameters associated with the pre-processing procedure; furthermore,
certain level of expertise or prior knowledge is often required upon designing a pre-processing
procedure, leading to a scenario where the effect of pre-processing may be user-dependent.
Therefore, despite the wide applicability of DCNN-based methodologies, uncertainties or
subjectivities due to parameter selection may still arise. For example, as reported in [40], it is
difficult to determine the optimal kernel size of the median filter to eliminate the surface variations
in the range image.

Instead of relying on image pre-processing techniques, which may bring uncertainties or
subjectivities, the methodology proposed in this study explores the feasibility of fusing the raw
intensity and range image to alleviate the image-related issues through cross-domain feature
correlation. Data fusion is a terminology in informatics, referring to a process to obtain more
comprehensive information and reduce uncertainty by integrating multiple data sources instead of
considering each data source separately [43,132]. Such a fusion process can be applied to multiple
data sources based upon a single type of data (i.e., homogeneous data fusion), or upon different
types of data (i.e., heterogeneous data fusion) [43-45,133]. In the context of image-based crack
detection, several applications using homogeneous data fusion such as [134,135] were reported in
literature. However, the combined information from homogeneous data sources may still carry the
issue existing in the same type of data [45]. For example, by fusing the intensity image data, which
may suffer from uneven illumination, the fused image data may still reproduce the issue incurred
by uneven illumination. Thus, it is preferable in practical situations to leverage heterogeneous data
fusion to incorporate data of diverse characteristics and further reduce the uncertainty existing in
each type of data [45,132,133]. In a study on near-surface crack detection, Heideklang and
Shokouhi [136] applied heterogeneous data fusion to integrate information from three types of
data to improve the detection performance. However, their method is not DCNN-based, and hence
may have difficulties adapting to data with real-world complexities. Beckman, et al. [137]
proposed a method using region-based DCNN and two types of data for concrete spalling detection.
In their study, the DCNN architecture considers only one type of data sources—the intensity image
data, while the other type of data (i.e., depth information through a depth sensor) is not
incorporated into the architecture of the DCNN. Overall, in the existing literature on DCNN-based
roadway crack segmentation, the feasibility and strategy of applying heterogeneous image fusion
have yet to be investigated; besides, the effects from different types of image data on DCNN
segmentation remain to be discovered and demonstrated.

47

In this study, the laser imaging system as introduced in section 2.4 is utilized to collect both
intensity and range images with spatial correlation for analysis. Two novel DCNN-based
methodologies with heterogeneous image data fusion for roadway crack classification (section
3.4.3) and segmentation (section 3.4.4), respectively, are proposed. The contributions are:

i) A novel heterogeneous image data fusion approach is proposed, by integrating the range
and intensity image data based on the concept of hyperspectral imaging to offer robust crack
detection performance;

ii) A series of new DCNNs, representing different strategies to exploit fused raw image data,
are developed and compared for crack classification and segmentation tasks, respectively;

iii) To evaluate the impact on crack detection from heterogeneous image data, four types of
data including raw range, raw intensity, filtered range (obtained through image pre-processing),
and fused raw image are trained and tested on baseline DCNN architectures for comparison;
additionally, based on the experimental analysis, findings related to the use of image pre-
processing are provided.

Through the proposed methodologies with the associated image fusion strategies for crack
classification and segmentation tasks, Challenge 7 (section 1.2) which is related with
heterogeneous image data is addressed.

3.4.2 Heterogeneous Image Data

Four different types of image data are considered in this study, which are raw intensity, raw range,
filtered range, and fused raw image. The characteristics of each type of image data are introduced
in this section.

• Raw intensity image

Intensity image is used by many image-based techniques [6] for crack detection. The general
assumption upon using the intensity image is that cracked regions have lower intensity values (i.e.,
darker) than non-crack regions. Thus, under the situation of changing illumination condition or
low intensity contrast between crack and non-crack regions, the performance of intensity-based
crack detection may deteriorate [19]. Moreover, image disturbances such as shadows, blemishes,
and oil stains which also have low intensity values may add difficulty and uncertainty to crack
detection on intensity images [19,131]. As an example, the intensity and range data of ten image
samples are illustrated in Figure 3-16 to demonstrate the issue of low contrast in intensity images.
In Figure 3-16, surface cracks can be clearly observed in the range image data; however, due to
low intensity contrast between the cracks and non-crack regions, the cracks are not noticeable in
the corresponding intensity images. Based on the cracks with low intensity contrast identified
through this study, their intensity contrast is usually lower than 30 (pixel intensity ranges from
0~255).

48

Figure 3-16. Cracks that are apparent in range images but not noticeable in intensity images.

• Raw range image

With the development of laser imaging technology, range image has been adopted by some
researchers [29-31,40,42] for surface crack detection. Range-based methods generally rely on the
elevation difference in cracked regions to interpret the crack presence. Laser-scanned range images
are insensitive to changing illumination condition, and noises such as oil stains and blemishes will
not interfere with crack detection on range images [19]. Nevertheless, despite its advantages over
intensity images, the range images also have issues such as being sensitive to surface variations
and non-crack patterns such as pavement grooves. Moreover, it may be challenging for range-
based methods to detect shallow cracks [29,31]. The shallow cracks referred in this study are
structural cracks which are difficult to be distinguished in the range data. Based on the shallow
cracks identified through this study, the change of elevation is usually under 0.5 mm. Although
shallow cracks do not pose a major threat to the health condition of the infrastructure, they can
reveal the trend of crack evolution and provide necessary information (e.g., location) to promote
precautionary measures. Therefore, accurate detection of the shallow cracks is of importance to
the health monitoring and condition assessment of the infrastructure.

• Filtered range image

This study utilizes the filter-based technique [29] proposed in section 3.1 to generate filtered range
images, addressing the issues of surface variations and grooved patterns in range image. An
example of applying this technique for image pre-processing is illustrated in Figure 3-17. The raw
range and filtered range image of a roadway surface are displayed in Figure 3-17 (a) and (b),
respectively. As can be observed in this figure, the surface variations and grooved patterns are
effectively eliminated from the range image surface, while the cracking features are preserved. In
this study, through a comparison on the segmentation performance by the same DCNN trained and
tested on raw range vs. filtered range image, the effect of image pre-processing can be
demonstrated. Meanwhile, it is noted that, although the use of filtered range images may avoid
disturbances such as surface variations and grooved patterns, the uncertainties or subjectivities due
to image pre-processing cannot be completely avoided. Therefore, it is preferable to directly utilize
raw image data for training and testing to improve the robustness of DCNNs against real-world
complexities.

49

Figure 3-17. An example of image pre-processing: (a) raw range image; (b) filtered range image; and (c)

zoomed-in views.

• Data fusion to combine raw intensity and range image

This study investigates the feasibility of directly combining the information in the raw intensity
and range image to alleviate issues existing in each type of data. For example, it may occur that
cracks of low contrast in intensity images may be more detectable in the corresponding range
images; and, in range images, cracks which have shallow depths may be more apparent in the
corresponding intensity data. Thus, the use of fused raw image data can provide complementary
and more comprehensive information through cross-domain feature correlation and extraction,
which may alleviate the issues in individual source of data.

A heterogeneous data fusion strategy is proposed in this study for DCNN-based roadway crack
classification and segmentation. As described in section 3.4.1, heterogeneous data fusion is a
process to obtain more comprehensive information and reduce uncertainty by integrating multiple
sources of data with diverse characteristics instead of examining individual data source [43,132].
In this study, the acquired raw intensity and range images with spatial correspondence are directly
fused at data level, by leveraging the concept of hyperspectral imaging [138]. Hyperspectral
images have multiple channels with an image component in each channel corresponding to a
specific spectral band. In like manner, the raw intensity and range image data can be integrated as
hyperspectral imaging. Figure 3-18 illustrates an example of the fused raw image data acquired
for crack segmentation, where the channel 1-3 of the hyperspectral image are the RGB channels
of a raw range image (dimension: 256×256×3), and the channel 4-6 are the RGB channels of a raw
intensity image (dimension: 256×256×3). It is noted that the range and intensity image data is
converted into 24-bit RGB image data format during data acquisition. As highlighted in Figure
3-18, the “spatial co-registration” feature is generated through data fusion based on the fact that
the intensity and range image data have pixel-to-pixel location correspondence, which is enabled
by the 3D laser imaging system (section 2.4). Thus, such features can be exploited to address issues
existing in individual data source and facilitate DCNN-based crack segmentation through cross-
domain feature correlation and extraction.

50

Figure 3-18. An illustration of the fused raw image data.

3.4.3 Proposed Methodology for Crack Classification

It is noteworthy that the acquired intensity or range image data used for crack classification by this
proposed methodology is 8-bit single-channel data, with the dimension as 256×256×1. Meanwhile,
the intensity or range image data used later for crack segmentation is 24-bit three-channel RGB
data with a higher resolution, which has the dimension as 256×256×3. Still, the basic concept on
the proposed data fusion strategy as illustrated in Figure 3-18 is the same, regardless of the
difference in the channel depth of the acquired image data.

In this section, a total of three DCNN architectures are proposed for different tasks. Net-A is
designed to take single-channel image input including raw intensity images, raw range images,
and filtered range images. Then, Net-B is modified from Net-A by changing the input layer and
the first convolutional layer, such that it can utilize fused raw image data for analysis. In addition,
another DCNN architecture, Net-C, is proposed as a different layout than Net-B to be trained and
tested on the fused raw image data. The proposed architectures include convolutional layers, fully
connected layers, and auxiliary layers such as batch normalization, leaky rectified linear unit
(LReLU), dropout, and softmax layers, which are introduced in section 2.3.1. It is worth noting
that upon designing these architectures, the total number of learnable parameters (see Table 3-5)
among these architectures is kept similar to each other, as a means to balance the model complexity
for comparison purposes.

51

• Net-A: a DCNN architecture for single-channel image input

The architecture of Net-A is illustrated in Figure 3-19, with its detailed configuration on each layer
tabulated in Table 3-3. This DCNN is a deep architecture which takes single-channel image
patches as the input and predicts the images as containing cracks or not.

• Net-B and Net-C: DCNN architectures for dual-channel image input

Two architectures, namely Net-B and Net-C, are configured for fused raw image data. These
architectures are designed to have completely different layouts: Net-B directly extracts the spatial
co-registration feature in the fused raw image data at a lower level; On the contrary, Net-C first
separates the intensity and range information from the input, then performs individual feature
extraction and finally merges the extracted features from the intensity or range data at a higher
level.

i) Net-B: data fusion at input layer

Having a similar architecture as Net-A, Net-B employs a straightforward yet very intuitive
approach to take advantage of the fused raw image data; that is, to modify the kernel sizes of the
first convolutional layer (“Conv1” in Table 3-3) from 3×3×1 to 3×3×2 to directly convolve with
the dual-channel image input. The detailed layer configuration of Net-B is also tabulated in Table
3-3. The layout of Net-B is illustrated in Figure 3-20. Such a configuration allows to exploit the
spatial co-registration features existing in the fused raw image data through the first convolutional
layer. Induced by changes in the filter kernels, the total number of parameters is slightly increased
from 215572 (Net-A) to 215716 (Net-B).

52

Figure 3-19. Net-A: Proposed DCNN architecture with single-channel image input.

Figure 3-20. Net-B: Proposed DCNN architecture with dual-channel image input.

Figure 3-21. Net-C: Proposed DCNN architecture with dual-channel image input.

53

Table 3-3. Detailed configuration of Net-A and Net-B.

*: the underlined numbers are associated with Net-A, and those in parentheses with Net-B.

Layer
name

Layer type Output
dimension

Kernel
size

Depth Stride Padding Learnable parameters

Input 256×256×1(2)* - - - - -
Conv1 convolution 128×128×16 3×3×1(2) 16 2 1 weight 3×3×1(2)×16 bias 1×16
BN1 batch

normalization
128×128×16 - - - - scale 1×16 shift 1×16

LReLU1 leaky
rectified
linear unit

128×128×16 - - - - -

Conv2 convolution 64×64×32 7×7×16 32 2 3 weight 7×7×16×32 bias 1×32
BN2 batch

normalization
64×64×32 - - - - scale 1×32 shift 1×32

LReLU2 leaky
rectified
linear unit

64×64×32 - - - - -

Conv3 convolution 32×32×48 11×11×32 48 2 5 weight 11×11×32×48 bias 1×48
BN3 batch

normalization
32×32×48 - - - - scale 1×48 shift 1×48

LReLU3 leaky
rectified
linear unit

32×32×48 - - - - -

Dropout1 drop out 32×32×48 - - - - -

Conv4 convolution 32×32×2 1×1×48 2 1 0 weight 1×1×48×2 bias 1×2
FC1 full

connection
1×2 - - - - weight 32×32×2×2 bias 1×2

Softmax softmax
normalization

1×2 - - - - - -

 Sum 215572(215716)

54

ii) Net-C: data fusion at concatenation layer

Different than Net-B, Net-C is designed to perform individual feature extraction on the intensity
or range data separated from the fused raw image input, as illustrated in Figure 3-21. The detailed
layer configuration is tabulated in Table 3-4. Separation on the input data is achieved by
convolving the fused raw image input with a fixed-weight 1×1 convolutional layer, which acts like
a channel switch. After feature extraction on separate channels, the high-level information is
merged through a depth concatenation layer, labeled as “Concat1” in Figure 3-21 and Table 3-4.
The major difference between Net-B and Net-C lies in that Net-B fuses image information at a
lower level through a convolutional layer, referred to as a “fuse-extract” pattern; Net-C, however,
fuses features extracted from separate image channels at a higher level through a concatenation
(i.e., fusion) layer, which can be referred to as a “extract-fuse” pattern. As demonstrated in Case
II, different patterns on the data fusion and feature extraction govern the network performance.

As mentioned previously, these DCNN architectures are designed such that they contain similar
amounts of learnable parameters, as indicated in Table 3-5. With all three architectures sharing the
similar level of model complexity as reflected by the number of parameters, the major impact
factors on the network performance thus originate from different types of image data and the
associated architecture layouts.

• Flow chart of the proposed DCNN-based crack classification methodology with
heterogeneous image fusion

The flow chart of the proposed DCNN-based crack classification methodology based on
heterogeneous image fusion is illustrated in Figure 3-22. As shown in this figure, the first step is
to obtain raw range and intensity image data by using the laser imaging system (section 2.4).
Second, the proposed heterogeneous image fusion approach (section 3.4.2) is employed to
integrate the raw range and intensity data. Then, the fused raw image is processed through a data
generation process, including image patch generation through the sliding window technique
(section 2.3.2), ground truth label (i.e., “crack” vs. “non-crack”) generation, data augmentation,
and training/validation datasets generation. The next two steps are to train the proposed DCNN
architectures on the fused image data and then utilize the trained DCNNs to predict a crack map
on a new roadway image data.

55

Figure 3-22. Flow chart of the proposed DCNN-based crack classification methodology with heterogeneous

image fusion.

Note that the flow chart as shown in Figure 3-22 refers to the crack classification tasks based on
heterogeneous image fusion. For DCNN-based crack segmentation tasks with heterogeneous
image fusion, which will be introduced in section 3.4.4, they share the same flow chart except that
the DCNNs are developed for segmentation instead of classification.

56

Table 3-4. Detailed configuration of Net-C.

Table 3-5. Number of parameters of the proposed architectures.

Layer
name

Layer type Output
dimension

Kernel
size

Depth Stride Padding Learnable parameters

Input 256×256×2 - - - - -
Conv1 convolution 128×128×16 3×3×1 16 2 1 weight 3×3×1×16 bias 1×16
BN1 batch

normalization
128×128×16 - - - - scale 1×16 shift 1×16

LReLU1 leaky rectified
linear unit

128×128×16 - - - - -

Conv2 convolution 64×64×16 7×7×16 16 2 3 weight 7×7×16×16 bias 1×16
BN2 batch

normalization
64×64×16 - - - - scale 1×16 shift 1×16

LReLU2 leaky rectified
linear unit

64×64×16 - - - - -

Conv3 convolution 32×32×48 11×11×16 48 2 5 weight 11×11×16×48 bias 1×48
BN3 batch

normalization
32×32×48 - - - - scale 1×48 shift 1×48

LReLU3 leaky rectified
linear unit

32×32×48 - - - - -

Conv4 convolution 128×128×16 3×3×1 16 2 1 weight 3×3×1×16 bias 1×16
BN4 batch

normalization
128×128×16 - - - - scale 1×16 shift 1×16

LReLU4 leaky rectified
linear unit

128×128×16 - - - - -

Conv5 convolution 64×64×16 7×7×16 16 2 3 weight 7×7×16×16 bias 1×16
BN5 batch

normalization
64×64×16 - - - - scale 1×16 shift 1×16

LReLU5 leaky rectified
linear unit

64×64×16 - - - - -

Conv6 convolution 32×32×48 11×11×16 48 2 5 weight 11×11×16×48 bias 1×48
BN6 batch

normalization
32×32×48 - - - - scale 1×48 shift 1×48

LReLU6 leaky rectified
linear unit

32×32×48 - - - - -

Concat1 concatenation 32×32×96 - - - - -
Dropout1 drop out 32×32×96 - - - - -
Conv7 convolution 32×32×2 1×1×96 2 1 0 weight 1×1×96×2 bias 1×2
FC1 full

connection
1×2 - - - - weight 32×32×2×2 bias 1×2

Softmax softmax
normalization

1×2 - - - - - -

 Sum 216004

Architecture Data type Number of
parameters

Net-A raw intensity,
raw range,
filtered range

215572

Net-B fused raw image 215716
Net-C fused raw image 216004

57

3.4.4 Proposed Methodology for Crack Segmentation

As explained previously, the intensity or range image data acquired for crack segmentation is 24-
bit three-channel RGB data with the dimension as 256×256×3, which has a higher resolution than
the image data used for crack classification (i.e., 8-bit single-channel image data).

Three encoder-decoder networks, denoted as Net-1, 2, and 3, are proposed in this study to exploit
heterogeneous image data. It is noteworthy that these architectures are designed such that they
consume similar amounts of parameters indicating their similar model complexity.

• Net-1: An encoder-decoder network for a single type of image data

Figure 3-23 illustrates the layout of Net-1, an encoder-decoder network designed to take a single
type of image data, such as raw intensity, raw range, or filtered range image. As displayed in Figure
3-23, the encoder of Net-1 contains five convolutional blocks. Each convolutional block consists
of a convolutional layer using multiple 3×3 kernels with a stride of 2 for feature extraction, a batch
normalization layer to improve generalization, and a LReLU layer to provide nonlinearity. After
feature extraction through the encoder, a convolutional layer with 1×1 kernels is utilized for cross-
channel pooling. Subsequently, in the decoder, five transposed convolutional blocks are adopted.
Each transposed convolutional block consists of a transposed convolutional layer for feature up-
sampling, and auxiliary layers including batch normalization and LReLU. At the end of the
decoder, a convolutional layer is utilized for cross-channel pooling on the expanded feature maps;
and, the output is normalized by a softmax layer to generate a crack probability map. Detailed
architecture configuration is tabulated in Table 3-6.

It is noted that the convolutional and transposed convolutional blocks are connected through
residual connections, as illustrated in Figure 3-23. Accordingly to [82,101], adding residual
connections in a deep architecture can help prevent performance degradation and avoid data
singularity. In this study, low-level features extracted by the convolutional blocks in the encoder
are merged with the high-level feature output of the transposed convolutional blocks in the decoder
through an arithmetic addition operation.

58

Figure 3-23. Net-1: An encoder-decoder network to take a single type of image data.

59

Table 3-6. Layer configurations of Net-1 and Net-2.

*: The numbers in parentheses are associated with Net-2.

**: INPUT: image input layer; CONV: convolutional layer; BN: batch normalization layer; LReLU: leaky rectified linear unit; TransCONV:
transposed convolutional layer; SOFTMAX: softmax normalization layer.

Layer
name

Layer
type**

Output
dimension

Kernel
size

Depth Stride Padding Cropping Learnable parameters

Input INPUT 256×256×3(6)* - - - - - -
Conv1 CONV 128×128×128 3×3×3(6) 128 2 1 - weight 3×3×3(6)×128 bias 1×128
 BN 128×128×128 - - - - - scale 1×128 shift 1×128
 LReLU 128×128×128 - - - - - -
Conv2 CONV 64×64×256 3×3×128 256 2 1 - weight 3×3×128×256 bias 1×256
 BN 64×64×256 - - - - - scale 1×256 shift 1×256
 LReLU 64×64×256 - - - - - -
Conv3 CONV 32×32×512 3×3×256 512 2 1 - weight 3×3×256×512 bias 1×512
 BN 32×32×512 - - - - - scale 1×512 shift 1×512
 LReLU 32×32×512 - - - - - -
Conv4 CONV 16×16×1024 3×3×512 1024 2 1 - weight 3×3×512×1024 bias 1×1024
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
 LReLU 16×16×1024 - - - - - -
Conv5 CONV 8×8×1024 3×3×1024 1024 2 1 - weight 3×3×1024×1024 bias 1×1024
 BN 8×8×1024 - - - - - scale 1×1024 shift 1×1024
 LReLU 8×8×1024 - - - - - -
1×1Conv1 CONV 8×8×2 1×1×1024 2 1 0 - weight 1×1×1024×2 bias 1×2
Tconv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
 LReLU 16×16×1024 - - - - - -
Tconv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512
 BN 32×32×512 - - - - - scale 1×512 shift 1×512
 LReLU 32×32×512 - - - - - -
Tconv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256
 BN 64×64×256 - - - - - scale 1×256 shift 1×256
 LReLU 64×64×256 - - - - - -
Tconv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128
 BN 128×128×128 - - - - - scale 1×128 shift 1×128
 LReLU 128×128×128 - - - - - -
Tconv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128
 BN 256×256×128 - - - - - scale 1×128 shift 1×128
 LReLU 256×256×128 - - - - - -
1×1Conv2 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2
Softmax SOFTMAX 1×2 - - - - - -
 Sum 22010116 (22013572)

60

• Net-2 and Net-3: Encoder-decoder networks for fused raw image data

Two encoder-decoder networks, Net-2 and 3, are developed for fused raw image data. The major
difference is that Net-2 directly exploits the fused raw image data containing spatial co-registration
features through a convolution operation, which can be referred to as a “fuse-extract” pattern; Net-
3, which has a two-stream encoder layout, performs feature extraction on separate image data, and
then fuse the high-level features through an addition operation, which can be considered as an
“extract-fuse” pattern. Net-2 and 3 have the same decoder layout, hence the influencing factor on
their segmentation performance stems from different strategies to exploit the fused raw image data
and the associated encoder layouts.

i) Net-2: An encoder-decoder network with a “fuse-extract” pattern

Net-2 represents a straightforward and intuitive approach by modifying the input layer of a DCNN
to exploit the fused raw image data. As illustrated in Figure 3-24, the layout of Net-2 is the same
as that of Net-1 except the image input layer, where the input for Net-2 contains 6 channels
comprised of raw range and intensity data. The layer configuration of Net-2 is also tabulated in
Table 3-6. Due to the change of input dimension, the kernel sizes in the first convolutional layer
(see “Conv1” in Table 3-6) are changed accordingly. And, the total number of parameters is
increased from 22010116 (Net-1) to 22013572 (Net-2).

ii) Net-3: An encoder-decoder network with an “extract-fuse” pattern

As illustrated in Figure 3-25, the encoder of Net-3 contains two streams, one for the raw range
image component, the other for the raw intensity image component. In the encoder, feature
extraction is performed separately on the raw range or intensity image data. The extracted features
in each stream are then fused through an addition layer (“Add1” in Figure 3-25 and Table 3-7),
which performs an arithmetic addition operation. Such a fusion strategy can be considered as an
“extract-fuse” pattern, different than the “fuse-extract” pattern adopted in Net-2. Regarding the
decoder, Net-3 utilizes the same decoder module as Net-1 and 2 for feature map expansion.
Meanwhile, residual connections are employed to merge the low-level features from both streams
in the encoder with the high-level features in the decoder. The layer configuration is tabulated in
Table 3-7. It is noted that, the total number of parameters of Net-3 (23491334) is similar to that of
Net-2 (22013572), implying very similar model complexity. Then, the difference in segmentation
performance on the fused raw image data is solely induced by the different encoder modules.

61

Figure 3-24. Net-2: An encoder-decoder network to take fused raw image data.

62

Figure 3-25. Net-3: A two-stream encoder-decoder network to take fused raw image data.

63

Table 3-7. Layer configuration of Net-3.

*: same as defined in Table 3-6.

Layer name Layer type* Output
dimension

Kernel
size

Depth Stride Padding Cropping Learnable parameters

Input INPUT 256×256×6 - - - - - -
Conv1
/Conv6

CONV 128×128×128 3×3×3 128 2 1 - weight 3×3×3×128 bias 1×128

 BN 128×128×128 - - - - - scale 1×128 shift 1×128
 LReLU 128×128×128 - - - - - -
Conv2
/Conv7

CONV 64×64×256 3×3×128 256 2 1 - weight 3×3×128×256 bias 1×256

 BN 64×64×256 - - - - - scale 1×256 shift 1×256
 LReLU 64×64×256 - - - - - -
Conv3
/Conv8

CONV 32×32×512 3×3×256 512 2 1 - weight 3×3×256×512 bias 1×512

 BN 32×32×512 - - - - - scale 1×512 shift 1×512
 LReLU 32×32×512 - - - - - -
Conv4
/Conv9

CONV 16×16×1024 3×3×512 1024 2 1 - weight 3×3×512×1024 bias 1×1024

 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
 LReLU 16×16×1024 - - - - - -
Conv5
/Conv10

CONV 8×8×256 3×3×1024 256 2 1 - weight 3×3×1024×256 bias 1×256

 BN 8×8×256 - - - - - scale 1×256 shift 1×256
 LReLU 8×8×256 - - - - - -
1×1Conv1
/1×1Conv2

CONV 8×8×2 1×1×256 2 1 0 - weight 1×1×256×2 bias 1×2

Add1 Addition layer 8×8×2 - - - - - -
Tconv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024
 LReLU 16×16×1024 - - - - - -
Tconv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512
 BN 32×32×512 - - - - - scale 1×512 shift 1×512
 LReLU 32×32×512 - - - - - -
Tconv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256
 BN 64×64×256 - - - - - scale 1×256 shift 1×256
 LReLU 64×64×256 - - - - - -
Tconv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128
 BN 128×128×128 - - - - - scale 1×128 shift 1×128
 LReLU 128×128×128 - - - - - -
Tconv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128
 BN 256×256×128 - - - - - scale 1×128 shift 1×128
 LReLU 256×256×128 - - - - - -
1×1Conv3 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2
Softmax SOFTMAX 1×2 - - - - - -
 Sum 23491334

64

CHAPTER 4: EXPERIMENTAL STUDY AND RESULTS

The proposed crack detection methodologies are applied to image data of real-world complexities.
And, the corresponding experimental results and discussions are presented in this chapter.

4.1 Image Processing Technique for Robust Crack Detection Using Range Image Data

This section presents an experimental study of applying the proposed crack detection methodology
on bridge deck surfaces. The intensity and range image data of a bridge deck are acquired by the
laser imaging system as introduced in section 2.4. The range data has the resolution of 𝑝𝑝𝑢𝑢 = 2
mm/pixel and 𝑝𝑝𝑣𝑣 = 1 mm/pixel along longitudinal and transverse direction, respectively. Three
images containing cracks with different noise level, average elevation, and crack pattern, are
selected from the data for illustration purpose. The same frequency domain filters are applied to
the three bridge deck range images, and the results of image filtering are demonstrated in section
4.1.1. The next section 4.1.2 shows the crack detection results on the filtered surfaces using the
contouring analysis. Then, in section 4.1.3, the accuracy of the proposed crack detection
methodology is demonstrated through a precision-recall analysis. The limitation of the proposed
technique is summarized in section 4.1.4.

4.1.1 Image Pre-Processing using Frequency Domain Filtering

Prior to detecting cracks, image pre-processing is conducted to reduce the influence from grooved
patterns and surface variations (Figure 3-1) such as ripples and rutting, and meanwhile suppress
the image noises. During the pre-processing, three filtering processes are performed sequentially.
First, a high-pass filtering is applied to the bridge deck range data, to remove surface variations;
then, a low-pass filtering is performed on the high-pass filtered surface for noise suppression;
finally, a multiple notch filtering is conducted to remove grooved patterns in the surface.

Figure 4-1. Intensity images of bridge deck surfaces: (a) Surface 1; (b) Surface 2; and (c) Surface 3.

The intensity images and range images of the bridge deck surfaces are shown in Figure 4-1 and
Figure 4-2 (a-c), respectively. In both figures, the horizontal axis indicates the longitudinal vehicle
driving direction. In Surface 1 [Figure 4-1 (a) and Figure 4-2 (a)], both longitudinal grooved

65

patterns and thin cracks propagating along the transverse direction exist; Surface 2 [Figure 4-1 (b)
and Figure 4-2 (b)] does not have grooves, but contains a punchout cracking pattern; in Surface 3
[Figure 4-1 (c) and Figure 4-2 (c)], a corner break cracking pattern can be observed. Figure 4-1 (a-
c) show the conventional intensity images, and Figure 4-2 (a-c) illustrate the original range
surfaces. In all three range images, the color scale is associated with surface elevation. Judging
from the color change, significant surface variations can be observed, especially in Surface 2.

Figure 4-2. Original range surfaces and the high-pass filtering result: (a-c) the original range Surface 1, 2, and

3; and (d-f) the high-pass filtered range Surface 1, 2, and 3.

66

• High-pass filtering result

A Gaussian high-pass filter is applied to the original range surfaces to remove surface variations.
The maximum crack width to be detected is selected as 200 mm—a threshold smaller than 200
mm can also be chosen, but a larger maximum crack width is generally considered as a more
challenging case as more cracks are preserved in the analysis. Then, based on the relationship
between the width of a crack and its frequency domain information derived in section 3.1.4, the
high-pass cutoff frequency is equal to 1

200
 cycle/mm. The corresponding high-pass filtering results

are demonstrated in Figure 4-2 (d-f). In all three filtered surfaces, the surface color becomes
monochromatic in blue, which corresponds to the color representing zero elevation. This result
indicates that, the Gaussian high-pass filter can effectively remove the surface variations. More
importantly, as can be also observed in the filtered images, cracks are still preserved through this
filtering process. This filtering result justifies the choice of the cutoff frequency based on the crack
width.

• Low-pass filtering result

As a subsequent step, a Gaussian low-pass filter is applied to the high-pass filtered surfaces for
noise suppression purpose. Generally, the higher the resolution of the data, the smaller the
minimum crack width can be detected. During the low-pass filtering process in this study, the
minimum width of the preserved cracks is selected as 10 mm. Therefore, according to section 3.1.4,
the low-pass cutoff frequency is equal to 1

10
 cycle/mm. Results of the low-pass filtering are

demonstrated in Figure 4-3. For each range surface, the side views (along the longitudinal vehicle
driving direction) of the original surface [Figure 4-3 (a-c)], high-pass filtered surface [Figure 4-3
(d-f)], and low-pass filtered surface [Figure 4-3 (g-i)] are illustrated in this figure, respectively.
Again, by comparing the side views of the original surface [Figure 4-3 (a-c)] and high-pass filtered
surface [Figure 4-3 (d-f)], it is clear that the high-pass filter is capable of removing the surface
variations, and the filtered surface is centered at zero elevation. Meanwhile, by applying the
proposed low-pass filtering, the image noises are suppressed, as can be clearly observed in Figure
4-3 (g) and (i). Judging from the elevation information, the transverse cracks in Surface 1, indicated
in Figure 4-3 (g), are preserved through the low-pass filtering process. Through these low-pass
filtering examples, the effectiveness of the Gaussian low-pass filter on noise removal is
successfully demonstrated.

67

Figure 4-3. Low-pass filtering result: side views of (a-c) the original range Surface 1, 2, and 3; (d-f) the high-

pass filtered range Surface 1, 2, and 3; and (g-i) the high-pass and low-pass filtered range Surface 1, 2, and 3.

68

• Multiple notch filtering result

The grooved patterns existing in Surface 1 can be removed by using the proposed notch filtering
technique. Based on the information presented in section 3.1.4, the following parameters are used
to design the multiple notch filter (see Figure 3-7): groove spacing 𝑔𝑔 = 20 mm; orientation angle
𝜃𝜃 = 0°; number of harmonics to be filtered out 𝑄𝑄 = 4; frequency radius 𝐷𝐷𝑛𝑛 = 0.2𝐹𝐹0. Result of the
notch filtering is illustrated in Figure 4-4. By applying the notch filtering, the grooved patterns are
successfully removed from the surface, as can be seen from the zoomed-in view in Figure 4-4 (b)
and (c) for a comparison on before and after filtering. It is evident that the proposed notch filtering
technique is capable of effectively removing the grooved patterns while preserving the cracks.

Figure 4-4. Multiple notch filtering result on Surface 1: (a) the high-pass, low-pass, and notch filtered range

surface; (b) zoomed-in view before notch filtering; and (c) zoom-in view after notch filtering.

4.1.2 Crack Detection Results Based on Contouring Analysis

Through the filtering processes, both the surface variations and grooved patterns are eliminated
from the surface, and the image noises are significantly reduced. Subsequently, the contouring
analysis implemented using marching squares algorithm and associated parameters (section 3.1.5)
is applied on the filtered image surface, and the obtained contour maps are displayed in Figure 4-5
(a-c). This figure shows the extracted contours by thresholding each filtered range surface at ℎ =
−1 mm. In this figure, the cracks are extracted from all three surfaces, but meanwhile many small
contours are also detected due to the remnant image noises.

By applying the criteria expressed in Equations (3-8) and (3-9), majority of the non-crack contours
can be removed. In this study, the parameters in Equations (3-8) and (3-9) are assigned as: 𝑡𝑡𝑡𝑡𝑙𝑙1 =
100 mm2, and 𝑡𝑡𝑡𝑡𝑙𝑙2 = 0.2. After removing the non-crack contours, the cracks are extracted from
the contour maps, and superimposed on the filtered range images, as shown in Figure 4-5 (d-f).
These filtered range images are considered as the ground truth. In Surface 1 [Figure 4-5 (d)], the
transverse cracks are clearly extracted; in Surfaces 2 [Figure 4-5 (e)] and 3 [Figure 4-5 (f)], the
punchout and corner break cracking patterns are detected with high accuracy as well, as can be
observed from the zoomed-in view in Figure 4-5 (h) and (i). By comparing each contour map with

69

the corresponding detected cracks, it can be seen that the proposed non-crack contour removal
criteria [Equations (3-8) and (3-9)] are very effective on discriminating the real cracks from the
non-crack contours.

Figure 4-5. Detected contours and cracks: (a-c) contour detection results on the filtered range Surface 1, 2,
and 3; (d-f) crack detection results on the filtered range Surface 1, 2, and 3; and (g-i) zoomed-in views of the

crack detection results.

70

4.1.3 Validation

A validation procedure is performed using the precision-recall analysis (section 2.5.1). In this
study, the ground truth crack pixels are obtained through a binarization procedure on the filtered
range images followed by a manual pixel selection process. The result of the precision-recall
analysis is summarized in Table 4-1. The performance metrics are calculated using the crack
detection results of all three images considered in the experimental study. As presented in Table
4-1, the average values of the Precision, Recall, and F1 are 91.7%, 97.1%, and 94.3%, respectively,
indicating high accuracy of the proposed crack detection methodology. Moreover, judging by these
metrics, the proposed methodology can achieve consistent accuracy on detection of different types
of cracks under the influence of grooved patterns, elevation variations, and image noises, thus
demonstrating the robustness of the proposed methodology.

In addition, the precision-recall analysis is performed on the crack detection results of the first
image [Figure 4-2 (a)] under three scenarios: i) only the high-pass filtering is not applied in the
pre-processing; ii) only the low-pass filtering is not applied; and iii) only the notch filtering is not
applied. The resulted F1 values in the three scenarios are 13.0%, 74.2%, and 18.3%, respectively.
The rapidly deteriorated values demonstrate poor crack detection performance when one of the
filtering processes is missing, indicating that the proposed methodology is a systematic integral
framework and each component is necessary to provide robust performance.

To further validate the proposed crack detection methodology, a comparison is performed between
the proposed methodology and a seed-based crack detection methodology [28]. This technique
was extended from grid cell analysis, a fast and accurate crack detection technique that was first
proposed by [51] and later used and extended by many other researchers [28,53,139-141] for crack
detection and comparison purposes.

The seed-based approach is performed on the same filtered image data and evaluated using the
same performance metrics as the proposed approach. The results are presented in Table 4-1. The
binary maps of i) the ground truth, ii) the cracks detected by the proposed methodology, and iii)
by the seed-based approach on Surface 1 are provided in Figure 4-6 as an illustrative example. As
can be observed from this figure, both the proposed methodology and the seed-based approach can
extract the major trend of the cracks, but the latter failed to detect some cracks (i.e., false negative).
From Table 4-1, the average Precision of the proposed methodology is similar to that of the seed-
based approach; however, the average Recall of the seed-based approach is much lower than that
of the proposed methodology, indicating more false negatives detected by the seed-based approach.
Based on the average F1 value, it can also be concluded that the proposed crack detection
methodology yields better crack detection results than the seed-based approach.

4.1.4 Limitations

The limitation of the proposed methodology is that it relies on detecting elevation difference in
local image regions to interpret the presence of cracks, therefore the performance might be
deteriorated when detecting shallow cracks. Future research effort will be devoted to i) extracting
cracking properties such as crack width from the detected crack contours in an accurate and

71

efficient manner; and ii) exploring the possibility of fusing the intensity image and range image as
complementary parts to improve crack detection performance.

Table 4-1. Summary of test results

*: Zhou, et al. [28]

Figure 4-6. Binary crack maps of Surface 1: (a) ground truth by manual selection; (b) detected by the

proposed methodology; and (c) detected by the seed-based approach.

 Category
Performance measures of
the proposed methodology

Performance measures of
the seed-based approach*

Image
index

Cracking
pattern

Grooved
pattern

Elevation
variation

Noise
level

Precision

(%)
Recall

(%)
F1
(%)

 Precision
(%)

Recall
(%)

F1
(%)

1
Transverse
cracking

YES Medium High 91.1 92.6 91.8 89.9 81.3 85.4

2 Punchout NO High Medium 88.1 99.3 93.4 89.8 68.1 77.4

3
Corner
break

NO High
Extremely

High
 95.8 99.4 97.6 93.0 78.0 84.9

Average 91.7 97.1 94.3 90.9 75.8 82.6

72

4.2 Deep Learning-Based Crack Classification

Section 4.2.1 first briefly introduces the data generation process; and then, the experimental setup
and the associated results and discussions are presented in section 4.2.2 and 4.2.3, respectively.
Finally, the limitation of the proposed DCNN-based crack classification methodology is explained
in section 4.2.4.

4.2.1 Data Generation

• Image acquisition and processing

Figure 4-7. Samples of the collected range images.

The roadway image data used for analysis was collected by the laser imaging system (section 2.4)
during an over one-year period through 2018 and 2019 on multiple concrete roads in Iowa. The
sliding widow technique as described in section 2.3.2 is adopted to crop the roadway image data
into image patches (dimension: 256×256×1). It is noted that this methodology directly works with
raw range image data. No data pre-processing techniques (e.g., noise removal and crack
enhancement) have been applied to the collected image data. Figure 4-7 demonstrates some data
samples that are collected for this study. As can be observed in this figure, the image samples are
highly diverse, which include cracks (in clean surfaces and grooved surfaces) and non-crack
samples (clean surfaces, grooves, pavement edges, and shoulder drop-offs). It is worth noting that,
most of these image samples suffer from varying levels of surface variations as well as scanning
noises, as can be interpreted by the color variations.

• Ground truth generation

Each acquired image sample is classified by trained personnel to generate a ground truth label (i.e.,
“crack” vs. “non-crack”).

• Data augmentation

73

Data augmentation techniques (section 2.3.3) including random translation and rotation are used
to effectively increase the number of crack samples. Each crack image is augmented through
random translations along upward, downward, left, and right directions for a random distance
within 100 pixels; additionally, augmented images are created by counterclockwise rotating the
original image by 45°, 90°, and 135°.

• Dataset configuration

In total, 25785 crack samples (including the augmented images) and 26623 non-crack samples are
obtained for training and testing purposes. The collected range images are separated into three
datasets, which are the training dataset, validation dataset, and test dataset 1, respectively. Images
in the training dataset are used to fit the DCNN model. During training, the fitted model routinely
(e.g., every half an epoch) makes predictions on the validation dataset, which provides an
evaluation on the goodness of the model fit and indicates if overfitting occurs or not. The test
dataset is used after the training is completed to evaluate the performance among different
networks. Shahin, et al. [142] investigated the issue of data division and its impact on network
model performance. According to their case study, the optimal performance was obtained when
20% of the data were used for validation, 70% of the remaining data for training and 30% for
testing. The data split ratio adopted in this study is 60% for training, 20% for validation, and 20%
for testing, similar as obtained in the optimal case in [142]. Meanwhile, the ratio between crack
and non-crack samples is around 1:1 to maintain a balanced class in the dataset. The number of
images in each dataset is tabulated in Table 4-2.

Table 4-2. Number of image samples in each dataset.

Additionally, another range image dataset, denoted as “test dataset 2”, is collected by the laser
imaging system (section 2.4) for testing and demonstration purposes. It consists of 5000 cracks
and 5000 non-crack samples. This laser-scanned range image dataset is very different than the
training dataset and test dataset 1 by the following facts: i) locations: the test dataset 2 is acquired
in Alabama which is different than the location where the training, validation, and test dataset 1
are obtained; ii) roadway types: the test dataset 2 is acquired on both asphalt and concrete roadways,
which contains crack patterns that are different than test dataset 1, such as the alligator cracks
illustrated in Figure 4-8. The purpose of introducing such an additional dataset for testing is to
demonstrate the conclusions regarding the proposed DCNNs and associated hyperparameter
selection for laser-scanned range images are consistent among diverse range image data, which

Training

dataset

Validation

dataset

Test

dataset 1

Test

dataset 2

Crack 15785 5000 5000 5000

Non-crack 16623 5000 5000 5000

Total 32408 10000 10000 10000

74

provides the necessary real-world complexity to better explain the performance of the proposed
DCNNs. The test dataset 2 [130] is made publicly available to benefit the community.

Figure 4-8. Samples of the test dataset 2.

4.2.2 Experimental Setup

• Computing hardware and software

All the experiments are performed on the same computer with the following specifications: CPU:
Intel i7-8750H; GPU: Nvidia GTX 1060 with 6GB RAM. The proposed methodology is
implemented in MATLAB environment [143]; its deep learning toolbox has also been used.

• Parameter initialization

The learnable parameters in the proposed DCNNs are initialized based on the specifications in
section 2.3.4.

4.2.3 Results and Discussions

Two experiments are designed to determine the joint hyperparameter specification for an optimal
DCNN architecture and the associated training scheme for roadway crack classification using
laser-scanned range images. The first experiment, Case I, intends to explore the optimal network
architecture by varying the hyperparameters related with network structure; Case II is focused on
determining the optimal values for the hyperparameters related with training. In addition, two more
experiments, Case III and IV, are implemented to further validate and demonstrate the network
performance. Case III is a comparative study on the classification performance between the
proposed architecture and four benchmark architectures. Case IV demonstrates the crack

75

classification performance of the proposed architecture with a new set of range image data from
actual roadway surveys.

• Case I: impacts from different kernel sizes, network depths and widths

Case I is designed to evaluate the impacts by changing the hyperparameters related with network
structure. The first hyperparameter considered in Case I is the network depth. In a neural network,
lower convolutional layers extract low-level features such as edges and color, while deeper layers
extract shapes and texture. Increasing the number of convolutional/fully connected layers allows
the network to adapt to high-level features but can meanwhile increase the computational cost.
Pauly, et al. [129] showed that the network with a deeper architecture had higher classification
performance on crack detection. The second hyperparameter is the kernel size in each
convolutional layer. Convolutions with large filter kernels are beneficial in terms of their
expressiveness and ability to extract features at a large scale, but the computation is
disproportionately expensive [144]. In literature, it is reported [30] that smaller kernel sizes have
better performance on crack detection than larger kernels. The third hyperparameters to be
evaluated is the network width, which refers to the number of kernels in each layer. Enlarging the
width of each convolutional layer can enhance the model capacity to represent the hierarchical
features, but it can affect the training process by introducing more parameters which require
stronger regularization. In a defects detection study, Faghih-Roohi, et al. [128] showed that a wider
(i.e., a larger number of kernels) architecture had better performance but required a longer training
time. Nevertheless, a comprehensive discussion on the optimal joint specification on these
hyperparameters for deep learning-based roadway crack classification using laser-scanned range
images is still missing in the literature.

The network configurations considered in Case I are tabulated in Table 4-3. As shown in this table,
three hyperparameters including the network depth, kernel size, and network width are varied
among different architecture candidates. To evaluate the effects of the network depths,
architectures with different depths from five to eight weight layers (i.e., convolutional layers and
fully connected layers) are created. Regarding the variations of kernel sizes, three patterns are
considered: i) the sizes of the filter kernels gradually increase as the network goes deeper (i.e., an
ascending trend); that is, the network intends to extract larger objects of interest in deeper layers;
ii) the kernel sizes gradually decrease along the convolutional layers (i.e., a descending trend); and
iii) the kernel sizes stay the same among all convolutional layers (i.e., a constant trend). Similarly,
three patterns are considered for the network widths; that is, the number of kernels
increases/decreases/stays the same from lower convolutional layers to deeper ones. The purpose
of varying the network width is to investigate the effects of putting emphasis on extracting different
levels of features.

Accordingly, the total number of architectures studied in Case I is 36. The symbols “↘”, “↗ ”, and
“→” in Table 4-3 denote “descending”, “ascending” and “constant” trends, respectively; the
operator Conv(𝑎𝑎, 𝑏𝑏) denotes that in the convolutional layer, the kernel size is 𝑎𝑎 × 𝑎𝑎 and the
network width (i.e., number of kernels) is 𝑏𝑏 ; note that each Conv() operation consists of a
convolutional layer followed by a batch normalization layer and a LReLU layer; the stride for each
convolutional layer is 2, except that the last convolutional layer in the architecture uses 1×1
kernels with a stride of 1; different padding sizes are assigned for each convolutional layer to match

76

the specific dimension of the feature map, as shown in Table 4-3; FC(𝑥𝑥) denotes that the number
of neuron output from the fully connected layer is 𝑥𝑥; Softmax(𝑦𝑦) denotes that the number of
classes is 𝑦𝑦. An example of the architecture is illustrated in Figure 3-10.

To isolate the influence, the hyperparameters associated with training are configured with the same
setting among different candidates in Case I. The initial learning rate is selected as 0.01, and the
learning rate drop factor is set as 0.8. In LReLU layers (section 2.3.1), the gradient for negative
neuron input α = 0.01 is selected, because this value is widely used in existing studies [38,90,145-
147]. The dropout factor is fixed as 50%. According to [92], the probability to drop out each neuron
is usually set as 50%, which is close to optimal for a wide range of networks and tasks. The mini-
batch size is 60; that is, during each iteration, a subset (i.e., 60 images) of the training dataset is
used to update the learnable parameters. One epoch is a full pass through the entire training dataset
using mini-batches. As indicated by Table 4-2, the number of images in the training dataset is
32408; thus, the total number of iterations in each epoch is 540. The number of epochs is set as 30,
which allows a sufficient amount of iterations for the training to converge. The weight decay and
momentum are set as 0.0003 and 0.9, respectively, because these values are widely used in existing
literature [30,38,39,42,129]. Discussion in Case II will show that such hyperparameter values for
the mini-batch sizes, learning rates, dropout factors, and LReLU factors can yield the highest
classification performance.

77

Table 4-3. Case I: network configuration.

Architecture Hyperparameters Layer type

 Network
depth

Kernel
size

Network
width Conv Conv Conv Conv Conv Conv Dropout Conv FC Softmax

 Input dimension
 256 ×256 128×128 64×64 32×32 16×16 8×8
1 5 ↘ ↗ (11,16) (7,32) (3,48) - - - 50% (1,2) 2 2
2 5 ↘ ↘ (11,48) (7,32) (3,16) - - - 50% (1,2) 2 2
3 5 ↘ → (11,48) (7,48) (3,48) - - - 50% (1,2) 2 2
4 5 ↗ ↗ (3,16) (7,32) (11,48) - - - 50% (1,2) 2 2
5 5 ↗ ↘ (3,48) (7,32) (11,16) - - - 50% (1,2) 2 2
6 5 ↗ → (3,48) (7,48) (11,48) - - - 50% (1,2) 2 2
7 5 → ↗ (7,16) (7,32) (7,48) - - - 50% (1,2) 2 2
8 5 → ↘ (7,48) (7,32) (7,16) - - - 50% (1,2) 2 2
9 5 → → (7,48) (7,48) (7,48) - - - 50% (1,2) 2 2
10 6 ↘ ↗ (15,16) (11,32) (7,48) (3,64) - - 50% (1,2) 2 2
11 6 ↘ ↘ (15,64) (11,48) (7,32) (3,16) - - 50% (1,2) 2 2
12 6 ↘ → (15,48) (11,48) (7,48) (3,48) - - 50% (1,2) 2 2
13 6 ↗ ↗ (3,16) (7,32) (11,48) (15,64) - - 50% (1,2) 2 2
14 6 ↗ ↘ (3,64) (7,48) (11,32) (15,16) - - 50% (1,2) 2 2
15 6 ↗ → (3,48) (7,48) (11,48) (15,48) - - 50% (1,2) 2 2
16 6 → ↗ (7,16) (7,32) (7,48) (7,64) - - 50% (1,2) 2 2
17 6 → ↘ (7,64) (7,48) (7,32) (7,16) - - 50% (1,2) 2 2
18 6 → → (7,48) (7,48) (7,48) (7,48) - - 50% (1,2) 2 2
19 7 ↘ ↗ (19,16) (15,32) (11,48) (7,64) (3,80) - 50% (1,2) 2 2
20 7 ↘ ↘ (19,80) (15,64) (11,48) (7,32) (3,16) - 50% (1,2) 2 2
21 7 ↘ → (19,48) (15,48) (11,48) (7,48) (3,48) - 50% (1,2) 2 2
22 7 ↗ ↗ (3,16) (7,32) (11,48) (15,64) (19,80) - 50% (1,2) 2 2
23 7 ↗ ↘ (3,80) (7,64) (11,48) (15,32) (19,16) - 50% (1,2) 2 2
24 7 ↗ → (3,48) (7,48) (11,48) (15,48) (19,48) - 50% (1,2) 2 2
25 7 → ↗ (7,16) (7,32) (7,48) (7,64) (7,80) - 50% (1,2) 2 2
26 7 → ↘ (7,80) (7,64) (7,48) (7,32) (7,16) - 50% (1,2) 2 2
27 7 → → (7,48) (7,48) (7,48) (7,48) (7,48) - 50% (1,2) 2 2
28 8 ↘ ↗ (23,16) (19,32) (15,48) (11,64) (7,80) (3,96) 50% (1,2) 2 2
29 8 ↘ ↘ (23,96) (19,80) (15,64) (11,48) (7,32) (3,16) 50% (1,2) 2 2
30 8 ↘ → (23,48) (19,48) (15,48) (11,48) (7,48) (3,48) 50% (1,2) 2 2
31 8 ↗ ↗ (3,16) (7,32) (11,48) (15,64) (19,80) (23,96) 50% (1,2) 2 2
32 8 ↗ ↘ (3,96) (7,80) (11,64) (15,48) (19,32) (23,16) 50% (1,2) 2 2
33 8 ↗ → (3,48) (7,48) (11,48) (15,48) (19,48) (23,48) 50% (1,2) 2 2
34 8 → ↗ (7,16) (7,32) (7,48) (7,64) (7,80) (7,96) 50% (1,2) 2 2
35 8 → ↘ (7,96) (7,80) (7,64) (7,48) (7,32) (7,16) 50% (1,2) 2 2
36 8 → → (7,48) (7,48) (7,48) (7,48) (7,48) (7,48) 50% (1,2) 2 2

78

Table 4-4. Case I: performance metrics.

Architecture Training
dataset

 Validation dataset
(at the end of training)

 Test dataset 1 Test dataset 2 Number of
parameters

Time
(min)

 Precision
(%)

Recall
(%)

F1
(%)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

1 44 98.2 96.6 97.4 98.0 98.2 98.1 6.8 93.6 98.9 96.2 7.7 45332
2 71 97.4 97.6 97.5 97.1 98.5 97.8 10.8 91.6 99.4 95.3 11.6 90100
3 86 96.8 97.7 97.3 96.6 98.8 97.7 13.1 91.5 99.5 95.3 13.9 144068
4 61 99.2 96.6 97.9 99.2 98.3 98.7 9.1 94.1 97.9 96.0 8.4 215572
5 84 98.5 97.8 98.2 98.0 99.1 98.5 11.9 84.8 98.8 91.2 12.2 142068
6 104 97.8 97.7 97.7 97.8 98.2 98.0 16.4 88.8 99.1 93.6 15.6 396740
7 51 99.7 97.6 98.6 99.5 98.7 99.1 8.1 97.1 99.3 98.2 7.5 105620
8 71 98.7 98.5 98.6 98.7 99.0 98.9 11.1 95.7 99.5 97.6 11.6 107124
9 90 99.2 97.6 98.4 98.9 98.6 98.8 13.2 95.3 99.3 97.2 14.4 232772
10 91 99.3 98.8 99.0 99.3 99.1 99.2 11.2 92.2 99.2 95.6 10.8 170100
11 197 99.3 98.7 99.0 98.6 99.3 98.9 28.9 96.8 99.1 97.9 30.0 467524
12 159 99.2 98.7 98.9 98.7 99.2 99.0 22.9 92.5 99.3 95.7 25.1 424916
13 84 99.6 99.2 99.4 99.6 99.2 99.4 13.8 98.7 99.2 98.9 13.6 903924
14 123 99.4 99.2 99.3 99.6 99.3 99.5 19.7 96.7 99.4 98.1 18.7 453700
15 117 99.7 98.8 99.3 99.6 99.2 99.4 18.6 97.2 99.2 98.2 20.3 912212
16 71 99.7 99.4 99.5 99.5 99.4 99.5 7.9 94.9 99.6 97.2 7.8 253300
17 108 99.6 99.0 99.3 99.4 99.2 99.3 17.6 97.1 99.8 98.4 16.4 255556
18 93 99.7 98.7 99.2 99.5 99.0 99.3 14.6 98.8 99.5 99.1 14.4 342740
19 151 99.7 99.5 99.6 99.5 99.4 99.5 22.8 99.3 99.4 99.3 19.4 504580
20 550 99.3 98.9 99.1 99.4 99.2 99.3 111.7 98.4 98.8 98.6 107.3 1633476
21 327 99.5 98.9 99.2 99.2 99.3 99.2 61.6 98.1 99.3 98.7 65.9 949220
22 87 99.5 99.4 99.4 99.7 99.4 99.5 13.7 97.1 99.4 98.2 15.3 2751748
23 167 99.4 99.4 99.4 99.5 99.2 99.4 30.0 96.6 99.3 97.9 27.1 1154756
24 126 99.5 98.6 99.1 99.5 99.0 99.2 21.4 95.9 97.4 96.6 22.2 1743332
25 71 99.7 99.5 99.6 99.7 99.6 99.6 7.9 99.5 99.5 99.5 7.8 503684
26 144 99.8 99.5 99.6 99.5 99.4 99.5 26.3 99.1 99.6 99.4 21.2 506692
27 95 99.8 99.3 99.5 99.6 99.3 99.5 16.1 98.5 99.3 98.9 14.7 455012
28 249 99.6 98.0 98.8 99.5 99.1 99.3 35.2 98.7 98.9 98.8 31.3 1231876
29 1355 99.1 98.2 98.6 99.0 99.1 99.0 224.3 98.8 98.9 98.9 232.8 4427956
30 539 98.8 98.2 98.5 99.2 99.1 99.1 102.8 99.1 97.6 98.3 103.8 1788980
31 116 99.6 98.4 99.0 99.7 99.1 99.4 18.4 93.6 98.7 96.1 15.9 6814596
32 262 99.8 97.9 98.9 99.8 98.9 99.3 45.9 94.3 96.8 95.5 41.0 2514356
33 132 98.7 97.6 98.1 99.2 98.5 98.8 21.7 93.4 98.4 95.9 21.7 2962100
34 73 99.7 99.2 99.4 99.5 99.5 99.5 8.0 98.6 99.4 99.0 8.0 880132
35 219 99.6 99.5 99.5 99.4 99.4 99.4 38.7 99.3 98.8 99.1 33.0 883892
36 96 99.7 99.2 99.4 99.5 99.4 99.5 16.1 99.2 99.4 99.3 14.7 567860

79

Table 4-5. Case I: the effects of changing the kernel sizes.

Table 4-6. Case II: performance metrics.

Architecture Kernel
size

 Training
dataset

Validation dataset
(at the end of training)

 Testing dataset 1 Testing dataset 2 Number of
parameters

 Time
(min)

Precision
(%)

Recall
(%)

F1
(%)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

25 7×7 71 99.7 99.5 99.6 99.7 99.6 99.6 7.9 99.5 99.5 99.5 7.8 503684
25-A 3×3 35 99.4 97.8 98.6 99.0 98.4 98.7 5.8 91.7 98.4 95.0 5.9 93444
25-B 11×11 86 99.8 99.0 99.4 99.7 99.1 99.4 11.3 98.9 99.4 99.2 11.3 1242116

Architecture Mini-batch
size

Dropout
factor

LReLU
factor

 Training
dataset

Validation dataset
(at the end of training)

 Testing dataset 1 Testing dataset 2

 Time
(min)

Precision
(%)

Recall
(%)

F1
(%)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

25 60 0.5 0.01 71 99.7 99.5 99.6 99.7 99.6 99.6 7.9 99.5 99.5 99.5 7.8

25 10 0.5 0.01 143 99.9 99.5 99.7 99.8 99.5 99.6 7.7 99.3 99.3 99.3 7.8
25 20 0.5 0.01 103 99.8 99.6 99.7 99.5 99.6 99.5 7.8 99.5 99.6 99.5 7.8
25 30 0.5 0.01 85 99.8 99.6 99.7 99.6 99.6 99.6 7.8 99.1 99.6 99.4 7.8
25 40 0.5 0.01 74 99.8 99.5 99.6 99.5 99.6 99.5 7.7 99.2 99.7 99.5 7.9
25 50 0.5 0.01 74 99.8 99.6 99.7 99.6 99.5 99.5 7.8 99.2 99.4 99.3 7.8
25 70 0.5 0.01 70 99.8 99.5 99.7 99.7 99.2 99.5 7.7 99.3 99.3 99.3 7.8
25 80 0.5 0.01 70 99.7 99.5 99.6 99.7 99.4 99.5 7.8 98.5 99.8 99.1 7.8
25 90 0.5 0.01 71 99.6 99.4 99.5 99.6 99.5 99.6 7.8 97.6 99.7 98.7 7.8
25 100 0.5 0.01 73 99.8 99.4 99.6 99.6 99.3 99.4 7.7 98.6 99.6 99.1 7.9

25-C 60 N/A 0.01 72 99.6 98.9 99.2 99.6 99.3 99.5 8.0 98.6 99.2 98.9 7.8
25-D 60 0.1 0.01 71 99.6 99.3 99.5 99.6 99.4 99.5 7.9 98.6 99.6 99.1 7.8
25-E 60 0.3 0.01 71 99.8 99.3 99.5 99.6 99.3 99.4 7.8 99.5 99.4 99.4 7.8
25-F 60 0.7 0.01 71 99.9 99.3 99.6 99.6 99.3 99.4 7.9 99.1 99.7 99.4 7.8
25-G 60 0.9 0.01 71 99.4 98.6 99.0 99.4 99.1 99.3 8.2 98.7 99.4 99.1 7.8

25-H 60 0.5 0.001 71 99.8 99.4 99.6 99.5 99.3 99.4 7.8 98.7 99.7 99.2 7.8
25-I 60 0.5 0.005 71 99.7 99.4 99.5 99.5 99.3 99.4 7.8 99.1 99.4 99.3 7.8
25-J 60 0.5 0.05 71 99.8 99.6 99.7 99.6 99.4 99.5 7.8 99.2 99.6 99.4 7.8
25-K 60 0.5 0.1 71 99.8 99.7 99.7 99.7 99.3 99.5 7.9 98.5 99.8 99.1 7.8
25-L 60 0.5 0.5 71 97.3 94.1 95.6 98.4 96.4 97.4 7.9 85.3 98.4 91.4 7.8

80

Table 4-7. Case III: performance metrics.

Architecture Training
dataset

Validation dataset
(at the end of training)

 Testing dataset 1 Testing dataset 2 Number of
parameters

Time
(min)

Precision
(%)

Recall
(%)

F1
(%)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

 Precision
(%)

Recall
(%)

F1
(%)

Time
(sec)

(×106)

25 71 99.7 99.5 99.6 99.7 99.6 99.6 7.9 99.5 99.5 99.5 7.8 0.5
Resnet18 217 99.8 99.8 99.8 99.7 99.9 99.8 47.0 100.0 99.3 99.6 47.2 11.7
Resnet34 379 99.8 99.6 99.7 99.8 99.7 99.7 63.1 99.9 99.4 99.6 64.0 21.8
Resnet50 668 99.8 99.8 99.8 99.7 99.7 99.7 98.3 99.9 99.6 99.8 99.6 25.6
Resnet101 1340 99.7 99.8 99.8 99.8 99.9 99.8 145.5 99.7 99.8 99.8 146.2 44.5

81

The performance metrics used for comparison are the Precision, Recall, F1 score (section 2.5.1),
training time, testing time, and number of parameters. Detailed statistics of these metrics are
tabulated in Table 4-4. To highlight, the F1 scores on the test datasets 1 and 2 are illustrated in
Figure 4-9 (a) and (b), respectively. Note that the horizontal axis of this figure is the architecture
index, as defined in Table 4-3. These indexes are further grouped by the patterns of variations in
the kernel sizes, referred to as the descending (“↘”)/ascending (“↗”)/constant (“→”) trends,
respectively. In this figure, blue/orange/yellow colors represent the architectures with ascending
(“↗”)/descending (“↘”)/constant (“→”) network widths, respectively. Meanwhile, a curve is fit to
the calculated F1 values, as indicated by the red dashed line in both plots.

Several observations regarding the impact from different architecture layouts through
hyperparameter selection can be made from Figure 4-9 (a) and (b) by comparing the F1 scores on
the test datasets:

i) By investigating the networks with different depths, it can be observed from the F1
statistics on both test datasets that better classification performance can be achieved as the network
depth increases from 5 layers until reaching 7 weight layers. For example, the average F1 score
increases from 98.4% (5-layer architectures) to 99.4% (7-layer architectures) for the test dataset 1,
and from 95.6% to 98.6% for the test dataset 2, respectively. A similar trend can be observed from
the fitted curves as well, where the peak occurs at 7-layer architectures for both test datasets;

ii) On the comparison between the architectures with the same depths but different trends of
kernel sizes, the ones using constant kernel sizes yield the best performance, which achieve higher
F1 scores by an average margin of 0.4% for the test dataset 1 and 1.7% for the test dataset 2 than
the ones with descending/ascending kernel sizes;

iii) The architectures with ascending network widths (blue color) generally outperform the
ones with descending/constant widths on the F1 scores by an average of 0.3% for the test dataset
1 and 0.5% for the test dataset 2, which suggests it is beneficial to put more emphasis on extracting
the high-level features.

82

Figure 4-9. Case I: performance metrics: (a) F1 score on the test dataset 1; and (b) F1 score on the test

dataset 2.

Judging from the highest F1 scores on the test datasets 1 and 2, the No. 25 candidate, which is a
7-layer architecture with 7×7 convolutional kernels and ascending network widths, is determined
as the optimal architecture for the laser-scanned range image datasets. The reason the No. 25
architecture yields the highest classification performance among the 36 candidates may be as
follows: among a family of DCNN classifiers proposed in this study (see Table 4-3), the No. 25
architecture can best describe and reflect the real-world complexities of the 3D laser-scanned
roadway range image data, which are collected from the fields under practical conditions.

83

Figure 4-10. Case I: performance metrics: (a) training time; (b) testing time on the test dataset 1; and (c)

number of parameters.

The other performance metrics including the training time, testing time, and number of parameters
are further evaluated to help determine the optimal architecture. The training time, testing time,
and number of parameters for each architecture are illustrated in Figure 4-10 (a), (b), and (c),
respectively. Only the testing time on the test dataset 1 is illustrated for concision, because the
statistics of testing time on the test datasets 1 and 2 are very close. The color notation and
horizontal axis labels are the same as defined in Figure 4-9. From Figure 4-10 (a) and (c), it can
be seen that the training time increases as the network architecture becomes deeper, introducing
more parameters to participate in the training. For example, by gradually increasing the network
depths through No. 5, 14, 23, and 32 architectures, the training and testing time increase from 84
mins to 262 mins, and 11.9 secs to 45.9 secs, respectively. Variations in the network widths also

84

lead to a significant impact on the network efficiency. As an example, for the No. 22, 23, and 24
architectures, which have the same depths and kernel sizes but ascending/descending/constant
network widths, the corresponding training and testing time are 87, 167, and 126 mins, and 13.7,
30.0, and 21.4 secs, respectively. In general, the architectures with ascending network widths (blue
color) lead to the most efficient training [Figure 4-10 (a)] and testing [Figure 4-10 (b)] performance
(i.e., an average of 96 mins training time and 13.6 secs testing time); on the contrary, the
architectures with descending network widths result in the worst efficiency (i.e., an average of 279
mins training time and 48.1 secs testing time). This phenomenon implies that employing a larger
number of kernels in the lower layers will cause more computational efforts on the convolution
operation, which drastically deteriorates the efficiency of the network.

Based on the above observations, a series of conclusions can be summarized: i) the
hyperparameters including the network depths, kernel sizes, and network widths can impact the
accuracy and efficiency of the neural networks to a significant extent; ii) regarding the network
depths, generally, a deeper architecture yields better performance but meanwhile requires more
computational efforts; the optimal depth for the proposed crack classification DCNN for the
collected laser-scanned roadway range image data is 7 weight layers; iii) using constant kernel
sizes leads to the highest classification performance; iv) variations in the network widths have a
large impact on the efficiency of the network; it is preferable to gradually increasing the number
of kernels from lower layers to deeper layers (i.e., an ascending trend), which results in better
performance on both the accuracy and efficiency than the other cases (i.e., descending and constant
trends).

Furthermore, an additional study is performed to explore the effects of using medium-sized
constant kernels vs. small/large kernels. Two variants of the No. 25 architecture are implemented.
The only difference is that the kernel sizes are 7×7, 3×3, and 11×11 for the original No. 25
architecture and its variants No. 25-A, and 25-B, respectively. The corresponding performance
metrics are tabulated in Table 4-5. It can be seen from this table that the architecture with medium-
sized kernels (kernel size = 7×7) yields the highest F1 scores (1% improvement from No.25-A on
the test dataset 1 and 4.5% on the test dataset 2), and meanwhile maintains an efficient training
and testing speed.

• Case II: impacts from different mini-batch sizes, learning rates, dropout factors, and LReLU
factors

With the optimal DCNN architecture (No. 25 in Table 4-3) selected in Case I, the effects of varying
the mini-batch sizes, learning rates, dropout factors, and LReLU factors are investigated in Case
II. Case II is comprised of four subcases as described below:

i) Different mini-batch sizes

The mini-batch size is the number of image data that are utilized in each iteration to update the
parameters. It is common to train and test image datasets in small batches to improve the efficiency
and generalization. Accordingly, the choice on the mini-batch size affects the convergence speed
and computational efficiency. It has been observed in literature that when using a larger batch there

85

is a degradation in the quality of the model, as measured by its ability to generalize [148]. In Case
II, the effects of utilizing different mini-batch sizes for training are investigated.

Different mini-batch sizes varying from small to medium [Equation (4-1)] are adopted to train the
optimal architecture (No. 25 in Table 4-3). The performance metrics are tabulated in Table 4-6 and
illustrated in Figure 4-11 (a) and (b), respectively. As can be observed from Figure 4-11 (a), the
training time are effectively reduced by up to 40% as the mini-batch size increases from 10 to 50,
indicating an improvement of the network efficiency. Keeping increasing the mini-batch to 100
does not lead to a significant impact on the training efficiency. Meanwhile, from Figure 4-11 (b),
which shows the F1 scores on the test datasets 1 and 2, it can be concluded that increasing the
mini-batch sizes from 10 to 100 result in relatively small variations (≤0.5%) in the testing F1 score.
By jointly considering the network performance in terms of efficiency and accuracy, the optimal
value for the mini-batch size is selected as 60, which is used in Case I.

 Mini-batch sizes = [10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100] (4-1)

Figure 4-11. Case II: the effects of changing the mini-batch size: (a) training time; and (b) F1 score on the test

datasets 1 and 2.

ii) Different initial learning rates and learning rate drop factors

The learning rate is considered as one of the most important hyperparameters that needs to be
carefully tuned for the model [38]. Determination of the learning rate is a very critical and yet
case-dependent procedure, as it affects the model ability to quickly adapt to the data through
controlling the step size. A learning rate that is too large will result in a slow convergence or even
instability, whereas a too small one can cause the parameters to stop responding to the error
gradient. According to the recent observations [149,150], smaller learning rates lead to a sharper
minima and poorer generalization. In the literature [149,151], large learning rates are
recommended. In Case II, the proper learning rate for the proposed DCNN is determined.

86

This study utilizes a piecewise learning rate, which gradually decreases during training, to facilitate
a quick convergence in the early stage of training and fine-tune the parameters in the late stage.
The hyperparameters related with the learning rate are the initial learning rate and the learning rate
drop factor. By using a piecewise learning rate strategy, the learning rate decays by multiplying a
drop factor every a few iterations, for example, every two epochs. In this study, a grid search is
employed to explore the optimal joint specification of the values related with the learning rates. A
set of values for the initial learning rates and learning rate drop factors are specified as Equations
(4-2a) and (4-2b), respectively. In total, 30 combinations of the initial learning rates and drop
factors are utilized to train the optimal architecture. During training, the learning rate drops every
two epochs. On evaluating the performance, the F1 scores evaluated on the test datasets 1 and 2
are employed as the metrics, which are illustrated in Figure 4-12 (a) and (b), respectively. Detailed
statistics are not tabulated herein for concision. In each plot of Figure 4-12, the horizontal x axis
is the initial learning rate value, and the horizontal y axis is the learning rate drop factor; the vertical
z axis is the testing F1 score; in addition, a surface is fit to the data samples. It can be observed
that as the learning rate drop factor decreases, the F1 scores on both test datasets will reduce
correspondingly (by up to 4% in the test dataset 1 and 9% in the test dataset 2), especially when
the initial learning rate is relatively small. With a large initial learning rate (e.g., between 0.005
and 0.05) and a high drop factor (e.g., 0.7 to 0.9), the resulted testing F1 scores will plateau to a
high value (≥99%). The optimal point marked in Figure 4-12 corresponds to an initial learning
rate of 0.01 and a drop factor of 0.8, which are used for the study in Case I.

 Initial learning rate = [0.001 0.005 0.01 0.05 0.1] (4-2a)

 Learning rate drop factor = [0.9 0.8 0.7 0.6 0.5 0.4] (4-2b)

87

Figure 4-12. Case II: the effects of changing the learning rate: (a) F1 score on the test dataset 1; and (b) F1

score on the test dataset 2.

iii) Different dropout factors

In DCNN training, it may occur that a neural network is too attuned to the training data that it loses
the ability to generalize to new data. Such a phenomenon is referred to as overfitting. Dropout [92]
is an effective regularization technique to address this issue. During training, each neuron input to
the dropout layer is randomly deactivated by a probability (i.e., dropout factor), such that the
network is forced to adapt to different neurons, which improves generalization. In the literature
[92], it is reported that a dropout factor of 50% is suitable for a wide variety of tasks. In Case II,
five variants of the optimal architecture, denoted as No. 25-C through G, are developed, each
having a different dropout factor in their dropout layer, as expressed in Equation (4-3). It is noted
that a dropout factor of 0 indicates no dropout is applied to the neuron input; and, a dropout factor
of 90% indicates that each neuron is very likely to be deactivated during training.

 Dropout factor = [0 10% 30% 70% 90%] (4-3)

The experimental results on the acquired laser-scanned range image datasets are tabulated in Table
4-6. From the table, varying the dropout factor does not impact the training or testing efficiency;
also, judging from the validation and testing metrics, no overfitting is observed. The F1 scores on
the test datasets 1 and 2 are illustrated in Figure 4-13 (a). It is observed that the dropout value
corresponding to the highest F1 scores on the test datasets 1 and 2 is 50%, which is adopted by the
optimal architecture in Case I. Moreover, as the dropout factor gradually increases from 0 to 50%

88

or gradually decreases from 90% to 50%, the network achieves better classification performance
on the test datasets.

Figure 4-13. Case II: the effects of changing the dropout factor and LReLU factor: F1 score on the test

datasets 1 and 2 upon changing (a) the dropout factor; and (b) the LReLU factor.

iv) Different LReLU factors

In literature, LReLU [90] is often utilized as the nonlinear activation function to add nonlinearity
to a neural network. LReLU is a bi-linear function whose gradient for non-negative input is 1, and
α for negative input. Usually, α is selected as a small positive value to avoid “dying neuron”
problem during back-propagation. Five variants of the optimal architecture, denoted as No. 25-H
through L, are developed to investigate the influence of changing the LReLU factor. Their LReLU
factor values in each LReLU layer are expressed in Equation (4-4).

The corresponding performance metrics are displayed in Table 4-6. It is observed from this table
that varying the LReLU factor does not lead to a notable impact on the training and testing
efficiency on the collected laser-scanned range image datasets. Regarding the classification
accuracy, the F1 scores on the test datasets 1 and 2 upon changing the LReLU factors are illustrated
in Figure 4-13 (b). It can be seen when the LReLU factor is relatively small (≤ 0.1), the resulted
F1 scores have a very marginal variation of less than 0.3%. However, when a large LReLU factor
α = 0.5 is used, the classification accuracy deteriorates, as can be observed from the F1 scores on
both test datasets. It is also noteworthy that the LReLU factor leading to the highest F1 scores on
the test datasets is equal to 0.01, which is adopted in the optimal architecture in Case I.

 α = [0.001 0.005 0.05 0.1 0.5] (4-4)

• Case III: proposed vs. benchmark architectures

This section illustrates the comparison result on the model performance between the optimal
architecture (No.25) and four benchmark architectures as Resnet18, Resnet34, Resnet50, and
Resnet101 [82], which represent different levels of model complexities. These four architectures
are commonly used DCNNs for image classification and segmentation tasks. Figure 4-14
illustrates the comparison result, and the detailed statistics are presented in Table 4-7. Consistent

89

results on the F1 score and testing time on two different test datasets are observed. It can be seen
from Figure 4-14 (a) that the proposed architecture achieves similar levels (within a margin of
0.3%) of F1 scores on the test datasets 1 and 2 as the benchmark architectures. It is thus shown the
proposed architecture is capable of achieving high accuracy on crack classification. Meanwhile,
judging from Figure 4-14 (b-c), the proposed architecture yields the most efficient training and
testing performance compared against the benchmarks; and, it is able to reflect the complexity of
the range image data by using the least amount of learnable parameters, as shown in Figure 4-14
(d). For example, the No. 25 architecture only consumes around 5% of the training and testing
time and 1% of the number of learnable parameters as consumed by Resnet101, but it can achieve
the same level of classification accuracy (within a margin of 0.3% in the F1 scores on both test
datasets).

Figure 4-14. Case III: performance comparison: (a) F1 score on the test datasets 1 and 2; (b) training time; (c)

testing time on the test datasets 1 and 2; and (d) number of parameters.

• Case IV: a crack classification example using the optimal architecture

To further demonstrate the classification performance of the proposed DCNN methodology, the
trained optimal architecture is tested on another new dataset from actual roadway surveys. As
illustrated in Figure 4-15, the range images in this dataset are collected from three roadway
surfaces [Figure 4-15 (a), (b), and (c)] containing cracks and many non-crack patterns such as
grooves and pavement edges. It is also worth noting that the range images suffer from drastic
surface variations, indicated by the change of color. The image patches are collected by using the
sliding window technique with a 50% overlap and predicted by the trained classifier. The predicted
crack map for each surface is enclosed by a black line, and the corresponding testing F1 score is
99.6%, 99.8%, and 99.4%, respectively. It is shown that the proposed methodology can detect
surface cracks with a high accuracy under the disturbance of many non-crack patterns such as
grooves and pavement edges.

90

Figure 4-15. Case IV: detected crack maps: (a) Surface 1; (b) Surface 2; and (c) Surface 3.

4.2.4 Limitations

Despite the high classification performance as demonstrated in the experimental study, the
proposed DCNN methodology has a limitation that it cannot detect shallow cracks, because this
range-based methodology relies on the variations in the elevation data to detect the presence of
cracks. A few false detection examples on the test datasets 1 and 2, predicted by the No.25
architecture in Case I, are demonstrated in Figure 4-16 (a) and (b), respectively. From Figure 4-16
(a), it is observed that the false negative examples all contain shallow cracks, while the false
positive examples are generated due to a lack of non-crack samples with potholes in the training
data. Meanwhile, in Figure 4-16 (b), similar issue of false negative detection occurs due to shallow
cracks.

Figure 4-16. False detections on: (a) test dataset 1; and (b) test dataset 2.

91

4.3 Deep Learning-Based Crack Segmentation

To disambiguate, the terms “Net-1”, “Net-2”, and “Net-3” in this section refer to the DCNN
architectures defined in section 3.2.2.

Section 4.3.1 first introduces the data generation process; then, information on the experimental
setup is described in section 4.3.2; and, in section 4.3.3, the experimental results and associated
discussions are summarized.

4.3.1 Data Generation

• Image acquisition and processing

The diversity of the image data used in this study is represented by the following facts: i) multiple
locations of data acquisition: the image data are acquired through a long-term (over one year) effort
from multiple concrete roadways with highly complex surface conditions in the states of Iowa and
Alabama; ii) high irregularity in crack patterns: the captured cracks include longitudinal and
transverse cracks on concrete pavements suffering from the issues including surface variations and
grooved patterns; iii) various crack orientations through data augmentation: the image data is
further processed through augmentation techniques including rotation and mirroring as described
in the subsequent section. In total, over 1200 image frames (dimension: 4096×2048×1) are
captured. Subsequently, each image frame is cropped into patches (dimension: 256×256×1)
through the sliding window technique. As a result, over 4000 image patches containing cracks are
selected by trained personnel as the data samples.

Figure 4-17. An example of the acquired image data: (a) raw range image contaminated with surface

variations and grooved patterns; and (b) manually generated ground truth.

• Ground truth generation

The ground truth pixel label map for each image patch is generated through a manual labeling
process, and further carefully inspected by trained personnel for quality control. Figure 4-17
illustrates an example of the generated image data. Figure 4-17 (a) shows a raw range image patch
contaminated with surface variations and grooved patterns; and, Figure 4-17 (b) illustrates the
corresponding ground truth pixel label, where the white pixels are cracks and black ones are non-
crack pixels.

92

• Data augmentation

Data augmentation techniques (section 2.3.3) including rotation (90°, 180°, and 270° counter-
clockwise) and mirroring (top-bottom and left-right) are adopted to augment the obtained image
patches and the associated ground truth in this study.

• Dataset configuration

Table 4-8 shows the configuration of the acquired datasets, where the image patches are separated
into the training, validation, and test datasets following a ratio of 60%:20%:20%. The training
dataset is utilized to fit the DCNN model. The validation dataset is evaluated every a few iterations
during training to provide a measure on the model fit and indicate whether overfitting occurs. After
training, the trained model makes predictions on the test dataset. The metrics on the test dataset
provide a cross-comparison between different DCNN models on their segmentation performance.

Table 4-8. Detailed configuration on the image datasets.

4.3.2 Experimental Setup

• Computing hardware and software

The specifications of the data processing computer are as follows: CPU is Intel i7-8750H and GPU
is Nvidia GTX 1060 with 6GB RAM. The proposed methodology is implemented in MATLAB
R2019a with its deep learning toolbox [143].

• Hyperparameter configuration

In this study, the mini-batch SGD with momentum algorithm (section 2.3.4) is adopted as the
optimization technique for training. The associated hyperparameters include the weight decay
factor, momentum, learning rate, LReLU factor, mini-batch size, and number of epochs. It is noted
that, upon training different architectures, the same hyperparameter values are adopted in this study
to provide a basis for comparison. The hyperparameter values are as follows: weight decay factor
= 0.0003; momentum = 0.9; initial learning rate = 0.01; learning rate drop factor = 0.8; LReLU
factor = 0.01; mini-batch size = 10; number of epochs = 10.

• Parameter initialization

The learnable parameters are initialized based on the settings in section 2.3.4.

Data type Image dimension Number of samples
Training Validation Test

range image 256×256×1 15016 5005 5005

93

4.3.3 Results and Discussions

Two experimental cases are performed in this study. Case I is designed to investigate the influences
from different network depths and residual connections on crack segmentation performance. From
Case I, an optimal architecture among the twelve proposed DCNNs that yields the highest
performance measures is selected. Then, in Case II, the performance of the optimal architecture is
further demonstrated on three roadway images.

• Case I: comparison on the segmentation performance

As introduced in section 3.3, this study proposes six encoder-decoder networks denoted as Net-1
through 6 with gradually increased network depths; from Net-1 through 6, the number of residual
connections is also increased from 1 to 6, as listed in Table 3-1 and illustrated in Figure 3-12 and
Figure 3-13. Besides, to isolate the impacts from increasing the network depth and from adding
residual connections, another six architectures denoted as Net-1A through 6A are also designed as
“plain” counterparts; these variants have the same layer configurations as their originals except
they do not employ any residual connection.

Besides, CrackNet II [30], a DCNN developed for roadway crack segmentation with range images,
is adopted in Case I for comparison. Thus, in total, thirteen architectures are trained and tested on
the same datasets under the same hyperparameter configurations. Five metrics including Precision,
Recall, F1, IOU, and BF score are evaluated on the validation dataset and test dataset, respectively,
with their mean values tabulated in Table 4-9. Meanwhile, the highest value in each type of metrics
is highlighted in bold font. From the “validation metrics” section in Table 4-9, it can be seen Net-
4 has the highest values in mean F1, IOU, and BF score among all cases, indicating the best model
fit. Net-4 also yields the highest values in the mean F1, IOU, and BF score calculated on the test
dataset. The metrics are further illustrated in Figure 4-18 to compare the performance among
different architectures. Figure 4-18 (a-e) shows the mean values of the Precision, Recall, F1, IOU,
and BF score evaluated on the test dataset, respectively. The horizontal axis refers to different
architectures, and the vertical axis represents percentage values. The following observations can
be made from Figure 4-18:

i) In all five metrics, the networks with residual connections (blue color) yield higher values
than their “plain” counterparts without residual connections (red color), especially in deeper
architectures (e.g., Net-6 vs. Net-6A);

ii) From Net-1A through Net-6A (without residual connections), the network depth is
increased from 6 to 16 layers (see Table 3-1). Meanwhile, their metrics values first reach the peak
at Net-2A then deteriorate. The mean F1, IOU, and BF score drop by over 50% from Net-2A to
Net-6A. It is observed that deeper architectures (Net-2A through 6A) without residual connections
lead to worse performance on the test dataset;

iii) From Net-1 through Net-6 (with residual connections), while architecture becomes deeper,
the corresponding metrics first increase then plateau at the highest values. It is thus demonstrated
that using residual connections is beneficial in that it avoids performance degradation in deeper
architectures by providing low-level information to the decoder;

94

iv) Judging by the mean F1, IOU, and BF score values, Net-4 results in the highest
performance on the test dataset, thus it is selected as the optimal architecture; by comparing it with
CrackNet II (green color), it can be seen that CrackNet II only exceeds marginally in the mean
Precision value by 1.4%; however, Net-4 outperforms CrackNet II on the mean Recall, F1, IOU,
and BF score by 43.2%, 33.4%, 37.9%, and 29.3%, respectively. Thus, the segmentation
performance of the proposed network (i.e., Net-4) on range image data is validated through a
comparison with other semantic DCNNs.

95

Table 4-9. Case I: performance metrics.

Index Net name Validation metrics
(mean percentage values)

 Testing metrics
(mean percentage values)

 Time

Precision Recall F1 IOU BF
score

 Precision Recall F1 IOU BF
score

 Training
(min)

Testing
(sec)

1 Net-1 88.9 57.4 67.2 52.8 75.8 88.7 57.2 67.0 52.6 75.6 817.5 105.9
2 Net-2 88.9 81.8 84.2 73.8 89.7 88.9 81.7 84.1 73.7 89.6 872.0 111.5
3 Net-3 88.8 85.9 86.7 77.2 92.1 88.9 85.9 86.7 77.2 92.2 818.0 122.3
4 Net-4 90.1 85.4 87.2 77.9 92.8 90.1 85.5 87.3 78.0 92.9 934.9 134.5
5 Net-5 89.9 85.1 87.0 77.5 92.6 89.8 85.1 86.9 77.4 92.7 947.6 162.3
6 Net-6 88.7 86.5 87.1 77.7 92.7 88.7 86.5 87.1 77.7 92.8 1473.7 162.1
7 Net-1A 86.1 59.8 66.9 53.0 74.9 85.9 59.8 66.8 52.8 74.6 833.2 105.5
8 Net-2A 84.5 74.5 78.1 65.2 87.7 84.6 74.3 78.0 65.1 87.6 850.2 108.1
9 Net-3A 78.5 71.6 74.0 59.7 85.6 78.7 71.5 73.9 59.7 85.5 858.4 136.2
10 Net-4A 72.2 60.7 65.1 49.6 78.1 72.4 60.7 65.2 49.7 78.0 908.2 149.6
11 Net-5A 58.3 47.3 50.5 35.6 62.1 58.6 47.5 50.8 35.9 62.2 940.5 155.0
12 Net-6A 52.1 16.3 21.9 13.5 33.0 52.2 16.7 22.4 13.8 33.5 1521.6 180.1
13 CrackNet II 91.5 42.8 54.5 40.6 64.1 91.5 42.3 53.9 40.1 63.6 2127.2 244.8

96

Figure 4-18. Case I: performance metrics on the test dataset: (a) Precision; (b) Recall; (c) F1; (d) IOU; and (e)

BF score.

97

In addition to showing the mean values of each type of metrics, the histograms of the metrics
evaluated on the test dataset (which contains more than 5000 range images) are also displayed in
Figure 4-19. In this figure, each plot is arranged such that the five metrics including Precision,
Recall, F1, IOU, and BF score are illustrated from left to right; in addition, the histogram generated
by CrackNet II is also illustrated in this figure; the horizontal axis of each plot refers to the
percentage value of each type of metrics, and the vertical axis represents the frequency counts.
Both axes are plotted in the same range and scale. From Figure 4-19, it is clear that from Net-2A
through Net-6A, the histogram of each type of metrics gradually shifts, resulting in a larger
dispersion and smaller mean value; such a phenomenon indicates performance deterioration
caused by increasing the network depth. Regarding the effect of residual connections, adding
residual connections results in a marginal difference in shallow architectures (i.e., Net-1 vs. Net-
1A). However, as the architecture evolves into a deeper layout from Net-1 to Net-6, adding residual
connections prevents the performance degradation issue which occurs among the architectures
without residual connections. Again, it can be observed the optimal architecture Net-4 outperforms
CrackNet II, in that the histograms of Net-4 for the Recall, F1, IOU, and BF score have smaller
spreads and higher mean values.

Figure 4-19. Case I: histograms of the performance metrics on the test dataset: (a) Precision; (b) Recall; (c)

F1; (d) IOU; and (e) BF score.

98

Testing results on twelve crack images which are contaminated with surface variations and grooves
are illustrated in Figure 4-20 to demonstrate the segmentation performance by different networks.
In Figure 4-20, the raw range image input, pixel label ground truth, and segmentation results are
displayed from top to bottom. Meanwhile, the mean percentage values of F1, IOU, and BF score
are labelled on top of each corresponding result. It is observed that Net-1, Net-1A, and CrackNet
II yield some false positive detections by misidentifying the grooves as cracks. By increasing the
network depth, such a misidentification issue vanishes for the proposed DCNNs. Again, it is shown
that Net-4 yields the highest segmentation performance on these image samples. Furthermore, the
influence of residual connection is also revealed in this figure by comparing each network pair
(e.g., Net-4 vs. Net-4A). It can be seen that the networks with residual connections (Net-2 through
6) can yield higher metrics values on almost all twelve samples than their “plain” counterparts.
Similar as the general trends observed in Figure 4-19, from Net-2A through Net-6A, the
segmentation performance keeps deteriorating; on the contrary, due to the existence of residual
connections, Net-2 through Net-6 yield very consistent crack segmentation performance under the
disturbance of grooves.

Regarding the efficiency of the proposed architectures, the training and testing time are listed in
Table 4-9 and illustrated in Figure 4-21. Generally, from Net-1 through Net-5, as the network
becomes deeper, the training time has little variation; however, in Net-6, the time cost for training
is drastically increased by over 70%, indicating a deteriorated training efficiency. The same trend
can be observed among Net-1A through 6A as well. Also, using residual connections yields very
marginal influence on the training time. Regarding the testing efficiency, the deeper architectures
require a longer time for testing; for example, the testing time is increased by 70% from Net-1A
to 6A. Meanwhile, as can be observed, using residual connections leads to up to 12% variations in
the testing time, and its impact on the testing efficiency is not consistent. Additionally, from Figure
4-21, it is clear that the optimal architecture Net-4 is more efficient than CrackNet II in that Net-4
only consumes 44% and 55% of the time cost for training and testing, respectively, by CrackNet
II.

99

Figure 4-20. Case I: Illustrative examples of the crack segmentation performance (the F1, IOU, and BF score

values are displayed at the title of each prediction).

100

Figure 4-21. Case I: network efficiency: (a) training time; and (b) testing time.

• Case II: performance demonstration on concrete roadway images

This section further demonstrates the segmentation performance of the optimal architecture, Net-
4, on three large roadway surfaces (dimension: 2048×2048×1). All three surfaces contain different
levels of surface variations and grooved patterns, reflecting the real-world complexities. A pixel-
level crack map is generated for each roadway surface, following the framework described in
section 3.3.2. It is noted the range image data in Case II did not participate in the training in Case
I. Figure 4-22 (a-c) illustrates the segmentation results on Surfaces 1, 2, and 3, respectively. In
Figure 4-22, the raw range image, ground truth, and predicted crack map of each surface are
illustrated from top to bottom, respectively. Three metrics including F1, IOU, and BF score are
employed to provide a quantitative measure on the segmentation performance on each image
surface, as listed in Table 4-10. The F1, IOU, and BF score values on all three images are above
80%, 70%, and 90%, respectively, indicating very high segmentation performance by Net-4. Thus,
it is demonstrated the proposed methodology can achieve accurate and robust crack segmentation
performance on laser-scanned roadway range images, in which the cracks are contaminated by
surface variations and grooved patterns.

Table 4-10. Case II: performance metrics.

Image
name

Data type Performance
metrics (%)
F1 IOU BF

score
Surface 1 range image 87.1 77.1 98.5
Surface 2 range image 84.8 73.6 96.9
Surface 3 range image 83.6 71.9 92.4

101

Figure 4-22. Case II: Predicted crack maps on roadway images: (a) Surface 1; (b) Surface 2; and (c) Surface 3.

102

4.3.4 Limitations

The proposed DCNN-based methodology may suffer from the issue of shallow cracks in the range
image data, as shown in Figure 4-23. This figure illustrates ten samples containing shallow cracks,
where the raw range image, ground truth, and predicted crack map are displayed from top to bottom,
respectively. Net-4 trained in Case I is utilized for testing the raw range images. The percentage
values of three metrics including F1, IOU, and BF score are calculated and labelled on top of each
predicted crack map. By both judging from the low metrics values and from graphically comparing
the predicted crack map vs. ground truth, it can be observed that the performance of the proposed
DCNN deteriorates on images containing shallow cracks, represented by false negative detections.

Figure 4-23. Performance deterioration due to shallow cracks.

103

4.4 Deep Learning-Based Data Fusion for Crack Classification

In this experimental study section, first, the data acquisition and data generation process are
introduced in section 4.4.1; then, information on the experimental setup is provided in section 4.4.2;
in section 4.4.3, two experimental cases are performed to evaluate the network performance with
different image types and architectures.

4.4.1 Data Generation

• Image acquisition and processing

In this study, the raw image range and intensity data are collected by the laser imaging system over
a one-year period on multiple concrete roadways. The acquired raw range images are further
processed by trained personnel using the proposed image pre-processing technique introduced in
section 3.1.4, to generate filtered range images which are free from surface variations, scanning
noises, and non-crack patterns. A sliding window technique as used in [39,93] is applied to crop
all the image data into many patches which have smaller sizes to reduce computational cost. Also,
the fused raw image patches are created using the raw range and intensity image pairs by the
procedure described in section 3.4.2. As a result, four types of image patches including raw range,
raw intensity, filtered range, and fused raw images are prepared for analysis. The dimension of
each image patch is 256×256×1 for the raw range, raw intensity, and filtered range image, but
256×256×2 for the fused raw image.

• Ground truth generation

Each image patch is categorized with a “crack” or “non-crack” label by trained personnel.

• Data augmentation

Meanwhile, to effectively increase the number of samples (i.e., image patches) in each type of
image, data augmentation techniques including rotation (counterclockwise 90°, 180°, and 270°)
and mirroring (left-right and up-down) are performed. Data augmentation is an effective approach
to reduce overfitting and improve generalization by increasing the number of image data through
label-preserving transformations [92,96]. In total, 30000 crack samples (including augmented
samples) and 30000 non-crack samples are generated for each type of image data; the amount of
crack and non-crack samples is kept the same to avoid the issue of class imbalance [103].

• Dataset configuration

The image samples are further separated into three datasets including the training dataset,
validation dataset, and test dataset following a ratio of 60%:20%:20%. The training dataset is used
to fit the DCNN model. The validation dataset is evaluated during training to provide a measure
on the goodness of model fit and indicate if overfitting occurs. After training is completed, the
network is tested on the test dataset to evaluate the model ability to generalize and adapt to a new
dataset. Detailed configuration on the image dataset for each type of image data is tabulated in
Table 4-11.

104

The above data augmentation and dataset generation process is repeated for each type of image
data. Thus, each type of image forms a set of training, validation, and test datasets.

Table 4-11. Detailed configuration on the image dataset.

4.4.2 Experimental Setup

Two cases are performed in this section. Case I investigates the impacts on DCNN-based roadway
crack classification by heterogeneous image data including raw range, raw intensity, filtered range,
and fused raw image; Case II further compares the performance of two architectures using the
fused raw image data, upon which the one leading to better classification performance is
determined.

• Computing hardware and software

On performing all the experiments, the same computing device is used to isolate the influence
from different devices. The specifications of the computer are as follows: CPU: Intel Xeon E5-
2630 @2.20 GHz; GPU: Nvidia Quadro M4000 with 8GB memory. MATLAB [143] and its deep
learning tool box are utilized to implement the proposed DCNNs.

• Hyperparameter configuration

The mini-batch stochastic gradient-descent (SGD) with momentum [99] is adopted in this study
as the optimization technique for training. The hyperparameters involved in this algorithm are
specified as follows. The momentum is set as 0.9. The weight decay is set as 0.0003. The initial
learning rate and the corresponding learning rate drop factor are selected as 0.01 and 0.8,
respectively; the decay period of the learning rate is set as 2 epochs; that is, the learning rate decays
by multiplying 0.8 in every 2 epochs. One epoch is a full pass of the entire image dataset through
mini batches. The mini-batch size is 60; that is, in each iteration, 60 images which have not yet
participated in the training in the current epoch are randomly chosen for updating. According to
the data generation process (see section 4.4.1), a total number of 36000 image samples are prepared
for training (see Table 4-11), resulting in 600 iterations in an epoch with each iteration containing
60 samples. Meanwhile, the validation dataset is evaluated every half an epoch. The statistics
evaluated on the validation dataset at the end of training are used to interpret the goodness of model
fit.

• Parameter initialization

The weights in the convolutional layers and fully connected layers are initialized by the Glorot
initializer [100], which independently samples the weights from a Gaussian distribution with zero

 Training Validation Test Total
Crack 18000 6000 6000 30000
Non-crack 18000 6000 6000 30000
Total 36000 12000 12000 60000

105

mean and a variance based on the dimension of the weights. The biases are initialized as 0. The
scale and shift factor in each batch normalization layer are initialized as 1 and 0, respectively.

4.4.3 Results and Discussions

In this section, two experimental cases are performed. Case I compares the performance of a series
of DCNN architectures with heterogeneous image data, determining the type of image data and
the associated architecture that yield the highest classification performance. Case II further
determines the better heterogeneous image fusion strategy with DCNN through a comparison.

• Case I: comparison on network performance by heterogeneous image data

Net-A (see section 3.4.3), which is designed for single-channel image input, is trained and tested
on three types of image data including the raw range, raw intensity, and filtered range image
datasets. Furthermore, the fused raw image data is utilized by Net-B (see section 3.4.3) which has
the similar layout as Net-A except it takes dual-channel image input. Comparison on the
performance metrics demonstrates the optimal form of image data to achieve the best classification
performance.

A DCNN architecture [39] is employed as a benchmark architecture to further evaluate the effects
of heterogeneous image data. This benchmark architecture is also utilized in some other
applications such as [74,152] for comparison. It is noteworthy that the benchmark architecture
originally utilizes raw intensity images for classification; in this study, it is trained and tested not
only on raw intensity images, but also on raw range and filtered range images for analysis.

106

Figure 4-24. Case I: Performance metrics on the test dataset: (a) Accuracy; (b) Precision; (c) Recall; and (d) F1.

The performance metrics including Accuracy, Precision, Recall, and F1 on the test dataset are
illustrated in Figure 4-24 (a), (b), (c), and (d), respectively. Meanwhile, the detailed statistics on
the performance metrics are tabulated in Table 4-12. Case I consists of seven subcases (No. 1-7 in
Table 4-12). In the subcases No. 1, 2, 3 in Table 4-12, Net-A is trained and tested on the raw
intensity, raw range, and filtered range image datasets, respectively; No. 4 corresponds to Net-B
trained and tested on the fused raw image dataset; the subcases No. 5, 6, and 7 utilize the
benchmark architecture for training and testing on the raw intensity, raw range, and filtered range
image datasets, respectively. In all four plots of Figure 4-24, the horizontal axis refers to the
subcase indexes as defined in Table 4-12, which are further grouped by the image types, including
raw intensity, raw range, filtered range, and fused raw image . Several observations on this figure
are summarized below:

i) It is evident that using intensity image data for training and testing results in the lowest
values on all four metrics shown in Figure 4-24. The Recall values for the subcases using intensity
images [No. 1 and 5 in Figure 4-24 (c)] are especially lower than others, indicating a much higher
false-negative rate. As will be demonstrated later in Figure 4-26, these false-negatives are induced
by the issue from low contrasts between cracks and non-crack regions in the intensity images,
which is the main reason leading to the worst performance;

ii) Based on the comparisons on the following subcases “No. 1 vs. No. 2” and “No. 5 vs. No.
6”, it is demonstrated that using raw range image instead of intensity image can effectively improve
the classification performance. Given the same architecture used, the F1 values on the test dataset

107

are improved by 3% (Net-A in No. 1 and 2) and 4% (the benchmark in No. 5 and 6), respectively,
due to the use of raw range images instead of raw intensity images. Similar level of improvement
on the other metrics is also observed. Therefore, based on the data acquired in this study, it can be
concluded that using raw range images is much better than using raw intensity images on DCNN-
based roadway crack classification;

iii) To evaluate the effect of image pre-processing, comparisons between the subcases “No. 2
vs. No. 3” and “No. 6 vs. No. 7” are performed. It can be observed that in these two comparisons,
utilizing filtered range images instead of raw images results in 0.5% and 0.7% improvements on
the F1 values on the test dataset, respectively. It is demonstrated that image pre-processing can
improve the network performance on DCNN-based roadway crack classification by a noticeable
margin. Nevertheless, considering such an improvement is achieved through an additional image
pre-processing procedure which may require a certain level of expertise, it is still preferable to
directly use the raw range image for real-world applications;

iv) It is clearly demonstrated in Figure 4-24 that using fused raw image data yields the highest
values in all four metrics. For example, by comparing the subcases between No. 2 (using raw range
image) and No. 4 (using fused raw image), around 1.2% improvement on the F1 value on the test
dataset are observed. Meanwhile, it can be concluded that using fused raw image leads to a more
significant improvement on the classification performance than using filtered range images, where
the F1 value on the test dataset in No. 4 (using fused raw image) is 0.7% higher than that in No. 3
(using filtered range images). Unlike the image pre-processing procedure, the heterogeneous
image fusion process is a more intuitive and straightforward approach to process the original raw
image data, which only requires acquisition of image range and intensity data. Therefore,
heterogeneous image fusion can be a more practical approach to improve the performance of a
DCNN model under real-world scenarios;

v) The proposed DCNN architecture yields similar or better performance in all the metrics
comparing to the benchmark. Furthermore, the above observations on the effects of utilizing the
raw intensity, raw range, and filtered range image data are mostly consistent between the proposed
and benchmark DCNNs. It is noted that the benchmark DCNN shows a lower Precision value
when using the filtered range image than the raw range image [see Figure 4-24 (b)], which is
different than the proposed DCNN.

108

Table 4-12. Detailed statistics on the performance metrics.

Figure 4-25. Case I: Performance metrics: (a) training time; and (b) testing time.

Index Architecture Image type Validation Testing Time
Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

 Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%)

 Training
(min)

Testing
(sec)

1 Net-A raw intensity 95.5 98.2 92.6 95.3 95.0 97.9 92.0 94.8 121.9 21.4
2 Net-A raw range 98.2 99.3 97.2 98.2 98.2 99.5 96.9 98.2 102.6 25.4
3 Net-A filtered range 98.6 99.4 97.7 98.6 98.7 99.5 97.8 98.7 129.1 25.3
4 Net-B fused raw

image
99.2 99.4 99.1 99.2 99.3 99.6 99.0 99.3 173.2 38.2

5 Cha et al. 2017 raw intensity 93.9 96.8 90.8 93.7 93.6 96.7 90.3 93.4 96.5 21.3
6 Cha et al. 2017 raw range 97.8 99.5 96.1 97.7 97.8 99.6 95.9 97.7 96.0 21.4
7 Cha et al. 2017 filtered range 98.3 98.4 98.1 98.3 98.5 98.9 98.1 98.5 125.9 21.2
8 Net-C fused raw

image
99.0 99.5 98.4 99.0 99.0 99.6 98.3 99.0 185.5 44.0

109

Regarding the efficiency, Figure 4-25 illustrates the training time and testing time for the subcases
in Case I. The horizontal axis in this figure is the same as specified in Figure 4-24; the vertical axis
refers to the training and testing time for Figure 4-25 (a) and (b), respectively. It can be observed
that, for the proposed DCNNs, using raw intensity, raw range, and filtered range images result in
a very similar time consumption, but they are all more efficient than the subcases with fused raw
images. The benchmark DCNN requires similar amount of time as the proposed. In comparison,
the training and testing time are increased by around 30% and 50% from Net-A (No. 1-3) to Net-
B (No. 4). This phenomenon may be caused by the increase in the volume of the input image data
due to heterogeneous image fusion.

Figure 4-26. Case I: Crack samples misidentified by Net-A with raw intensity image dataset (No. 1) but correctly

identified by Net-A with raw range image dataset (No. 2).

To further demonstrate the impact from different image datasets on the network performance,
some prediction results are illustrated in Figure 4-26 and Figure 4-27, respectively. Figure 4-26
demonstrates some false-negative samples predicted by Net-A which is trained and tested on the
raw intensity image dataset (No. 1 in Table 4-12). The false negatives shown in Figure 4-26 suffer
from low contrasts between cracks and non-crack regions and contaminations such as lane
markings. On the contrary, the cracks are very distinguishable in the corresponding range images
because of the elevation change. By utilizing the range image dataset, the same DCNN architecture
(No. 2) can correctly detect and classify these image samples previously misidentified when using
intensity images (No. 1).

Meanwhile, some false-negative samples predicted by Net-A with the raw range image dataset
(No. 2) are illustrated in Figure 4-27. As can be observed from this figure, most false-negative
samples contain shallow cracks which are further contaminated with grooved patterns. Such
shallow cracks, however, are correctly identified by Net-B with the fused raw image dataset (No.
4) by integrating the information from the corresponding intensity images. It is thus demonstrated
that by exploiting the spatial co-registration feature of cracks offered by heterogeneous data fusion
of range and intensity images, the classification accuracy can be effectively improved.

110

Figure 4-27. Case I: Crack samples misidentified by Net-A with raw range image dataset (No. 2) but correctly identified

by Net-B with fused raw image dataset (No. 4).

Furthermore, in Case I, an example of crack detection on a concrete roadway image (denoted as
“Surface 1”) is illustrated in Figure 4-28 to demonstrate the effects of different types of image data
on DCNN performance. In Figure 4-28 (a), (b), and (c), the raw intensity, raw range, and filtered
range images of Surface 1 are displayed; the fused raw image data is generated by combining
Figure 4-28 (a) and (b), and is not shown here. Surface 1 contains two major cracks propagating
along the transverse direction of the roadway, and many non-crack patterns (surface variations and
grooves). As can be observed in Figure 4-28 (a), some cracked regions in the raw intensity image
have the issue of low intensity contrast between the cracks and surroundings; similarly, in Figure
4-28 (b), shallow cracks exist in a few regions in the raw range image.

The crack maps based on the raw intensity, raw range, and filtered range images are generated by
the trained Net-A (No. 1, 2, and 3 in Table 4-12, respectively); and, the crack map based on the
fused raw image is generated by the trained Net-B (No. 4 in Table 4-12). Net-A and Net-B are
quite similar in terms of their layouts, only except that their input layer and the first convolutional
layer are different. Thus, the major impact factor on the detection performance is the different
types of image data used for DCNN analysis. Figure 4-28 (d-g) illustrate the crack maps detected
from the raw intensity, raw range, filtered range, and fused raw image data, respectively, where
the blue, red, and black patches indicate true-positive, false-negative, and false-positive detections.
It is noted that the crack maps are all overlaid with the same raw range image for cross comparison.
The detailed precision-recall statistics are tabulated in Table 4-13.

It can be seen from Figure 4-28 (d-g) and Table 4-13 that, the crack detection result based on the
raw intensity image yields the worst performance (e.g., F1 = 88.5%), including many false-
negative detections due to the low contrast issue. By using raw range or filtered range image, the
corresponding F1 values are increased to 95.2% and 94.0%, respectively. Meanwhile, comparison
between the detection results using raw range image vs. filtered range image suggests that applying
image pre-processing on the raw range image of Surface 1 does not yield higher classification
performance in this example. Instead, by using the strategy proposed in this study to fuse the raw
intensity and raw range image, the F1 values on Surface 1 are effectively increased by 10.4%
(using raw intensity vs. fused raw image) and 3.7% (using raw range vs. fused raw image). As can
be observed by comparing the differences between Figure 4-28 (g) and Figure 4-28 (d, e, f), the
use of fused raw image data for analysis helps eliminate many false-negative and false-positive
detections by cross-domain feature correlation and thus leads to the highest classification

111

performance. Through this example, it is again demonstrated that the proposed data fusion strategy
can effectively improve the DCNN performance on roadway crack detection.

Table 4-13. Precision-recall statistics of crack detection on Surface 1.

Index Architecture Image type Testing metrics on Surface 1
 Accuracy

(%)
Precision
(%)

Recall
(%)

F1
(%)

1 Net-A raw intensity 96.2 98.7 80.2 88.5
2 Net-A raw range 98.3 97.8 92.7 95.2
3 Net-A filtered range 97.9 98.9 89.6 94.0
4 Net-B fused raw image 99.6 100.0 97.9 98.9

112

Figure 4-28. Case I: Crack detection on Surface 1: (a) raw intensity image; (b) raw range image; (c) filtered range image;
(d) crack map detected from raw intensity image; (e) crack map detected from raw range image; (f) crack map detected

from filtered range image; and (g) crack map detected from fused raw image.

113

• Case II: comparison on network performance by different architectures with data fusion

Through Case I, it is evident that using fused raw image data can achieve the highest classification
accuracy. Subsequently, Case II is performed to investigate the better DCNN configuration to
exploit the fused raw image data. As described in section 3.4.3, two architectures, Net-B and Net-
C, are designed to take fused raw image data for training and testing. The major difference is that
Net-B represents a “fuse-extract” pattern while Net-C represents a “extract-fuse” pattern. Case II
consists of two subcases (No. 4 and 8 in Table 4-12). The subcases No. 4 and 8 correspond to Net-
B and Net-C trained and tested on the fused raw image data, respectively.

The corresponding performance metrics on the test dataset are illustrated in Figure 4-29. Four
metrics including Accuracy, Precision, Recall, and F1 are plotted in Figure 4-29 (a). In this plot,
the horizontal axis refers to the subcase indexes, which are further grouped according to the
performance metrics. It can be seen from Figure 4-29 (a) that Net-B results in higher values in all
four metrics by an average margin of around 0.5%; especially, the Recall of Net-B is 0.7% higher
than that of Net-C, indicating a lower false-negative rate.

Regarding the network efficiency, Figure 4-29 (b) shows the corresponding training and testing
time for both subcases. The horizontal axis of Figure 4-29 (b) is the subcase indexes grouped by
the training time and testing time. Net-B demonstrates a higher efficiency than Net-C in training
and testing by effectively reducing the time consumption by 7% and 14%, respectively.

Through the above comparison, it can be concluded that Net-B is more accurate and efficient than
Net-C on roadway crack classification with data fusion. The “fuse-extract” scheme adopted by
Net-B is superior to the “extract-fuse” scheme in Net-C in the sense that it leads to more
improvements on the network performance.

Figure 4-29. Case II: Performance metrics: (a) classification metrics on the test dataset; and (b) training and testing

efficiency.

4.4.4 Limitations

The proposed methodology based on heterogeneous image fusion, although yielding high
classification performance, still have a few limitations. The proposed DCNN methodology is a
patch-based approach; that is, the DCNN classifier detects cracks by image patches rather than by

114

pixels, which limits the detection resolution. The proposed methodology may have difficulties
detecting cracks on surface regions which suffer from both low intensity contrast in the intensity
image and shallow depth in the range image, as shown in Figure 4-28 (g).

115

4.5 Deep Learning-Based Data Fusion for Crack Segmentation

To disambiguate, the terms “Net-1”, “Net-2”, and “Net-3” in this section refer to the DCNN
architectures defined in section 3.4.4.

Section 4.5.1 first introduces the data generation process; then, information on the experimental
setup is introduced in section 4.5.2; finally, two experimental cases are presented in section 4.5.3.

4.5.1 Data Generation

• Image acquisition and processing

The raw intensity and range image data used in this study is resulted from a long-term (over one
year) effort on data collection from multiple concrete roadways, under varying ambient
environment and highly complex roadway surface conditions. The acquired roadway images are
further cropped into small patches (dimension: 256×256×3) for analysis. In addition to the raw
range and intensity data, filtered image data is generated through the filter-based technique [29]
developed in section 3.1. Furthermore, fused raw image data is created by combining the raw range
and intensity image through the proposed image data fusion approach described in section 3.4.2.
In total, over 4000 image patches in the format of raw range, raw intensity, filtered range, and
fused raw image data are produced. Figure 4-30 illustrates some examples from the acquired image
data with real-world complexities. In Figure 4-30, image-related issues such as surface variations
and grooved patterns exist in some range image patches; furthermore, as can be seen, shallow
cracks in some range images which are further contaminated by grooved patterns are more
distinguishable in the intensity images. Similarly, some intensity image patches suffer from the
issue of low contrast between the crack and non-crack regions; however, in their range image
counterparts, the cracking features are very noticeable. Besides, in the corresponding filtered range
images, the issues of surface variations and grooved patterns are effectively eliminated.

Figure 4-30. Examples of the acquired image data.

• Ground truth generation

The ground truth pixel label map for each image patch is generated through manual labeling by a
group of trained personnel over a period of half a year. The manual labeling process is performed
by leveraging information from both the range and intensity image data to reduce the uncertainties

116

due to low-contrast cracks in the intensity data or shallow cracks in the range data. It is noted that
during training and testing, the four different types of image data share the same ground truth.

• Data augmentation

In this study, data augmentation techniques (section 2.3.3) including rotation (90°, 180°, and 270°
counter-clockwise) and mirroring (top-bottom and left-right) are applied to the image patches and
their associated ground truth, expanding the total number of image sets to over 25000. Note that
each image set consists of a raw range image, a raw intensity image, a filtered range image, a fused
raw image, and a ground truth pixel label map.

• Dataset configuration

The generated image data is split into three datasets as tabulated in Table 4-14, namely the training,
validation, and test datasets, following a ratio of 60%:20%:20%. The training dataset contains the
majority of the image data, which is used during training to help update the learnable parameters
of the DCNN. The validation dataset is evaluated every a few iterations during training to help
tune the hyperparameters of the DCNN and indicate if overfitting occurs. The test dataset, which
does not participate in training, is then evaluated by the trained DCNN models for a cross-
comparison on their DCNN performance. Table 4-14 shows the detailed configuration of the
generated datasets. It is noted in Table 4-14 that the same configuration (i.e., image sequence) on
the training, validation, and testing datasets is applied to different types of image data. Thus, by
training and testing Net-1, 2 and 3 on the image data with distinct characteristics, the impact from
heterogeneous image data can be revealed and compared.

4.5.2 Experimental Setup

• Computing hardware and software

The specifications of the data processing computer are as follows: CPU: Intel i7-8750H; GPU:
Nvidia GTX 1060 with 6GB RAM. The proposed methodology is implemented in MATLAB
R2019a with its deep learning toolbox [143].

• Hyperparameter configuration

This study adopts the mini-batch SGD with momentum algorithm as introduced in section 2.3.4 to
train the DCNNs. Several hyperparameters including the weight decay factor, momentum, learning
rate, LReLU factor, mini-batch size, number of epochs are involved in the optimization process.
Upon training different architectures, the same hyperparameter values are adopted to provide a
basis for comparison. The hyperparameter values are as follows: weight decay factor = 0.0003;
momentum = 0.9; initial learning rate = 0.01; learning rate drop factor = 0.8; LReLU factor =
0.01; mini-batch size = 10; number of epochs = 10. Besides, the validation dataset is evaluated
every half an epoch during training.

• Parameter initialization

117

The learnable parameters in the proposed DCNNs are initialized base on the settings in section
2.3.4.

4.5.3 Results and Discussions

In this section, two experimental cases are performed. In Case I, eight DCNNs with different image
data are trained and tested for comparison. In Case II, the segmentation performance of these
DCNNs is further demonstrated on a concrete roadway surface.

• Case I: Impacts from heterogeneous image data

In addition to the proposed DCNNs in this study, two benchmark architectures, namely the
CrackNet II [30] and VGG16-FCN [83] are employed for comparison. CrackNet II is designed to
analyze laser-scanned range images, with a surface flattening technique applied as pre-processing
to address the issue of surface variations [30]; VGG16-FCN is designed to take raw intensity image.
Case I consists of eight subcases (see Table 4-15), which are specified as follows: i) Net-1 with
raw range image (No. 1 in Table 4-15, same hereafter); ii) Net-1 with raw intensity image (No. 2);
iii) Net-1 with filtered range image (No. 3); iv) Net-2 with fused raw image (No. 4); v) Net-3 with
fused raw image (No. 5); vi) CrackNet II with raw range image (No. 6); vii) CrackNet II with
filtered range image (No. 7); and viii) VGG16-FCN with raw intensity image (No. 8).

118

Table 4-14. Case I: Configuration of the image datasets.

Table 4-15. Case I: Performance metrics.

Architecture Data type Number of crack images and ground truth
Training
dataset

Validation
dataset

Testing
dataset

Total

Net-1
/VGG16-FCN

raw intensity 15016 5005 5005 25026

Net-1
/CrackNet II

raw range 15016 5005 5005 25026

Net-1
/CrackNet II

filtered range 15016 5005 5005 25026

Net-2
/Net-3

fused raw image 15016 5005 5005 25026

Index Architecture Data type Validation Testing Time
Precision
(%)

Recall
(%)

F1
(%)

IOU
(%)

BF
score
(%)

 Precision
(%)

Recall
(%)

F1
(%)

IOU
(%)

BF
score
(%)

 Training
(min)

Testing
(sec)

1 Net-1 raw range 84.0 71.3 75.6 61.9 79.5 84.0 71.3 75.6 61.8 79.4 959.5 241.4
2 Net-1 raw intensity 76.2 58.1 63.3 50.8 68.5 76.2 57.7 63.0 50.4 68.2 977.5 246.2
3 Net-1 filtered range 87.0 68.4 75.1 61.4 79.1 87.0 68.7 75.3 61.6 79.2 977.8 286.7
4 Net-2 fused raw image 87.5 76.1 80.3 68.3 84.4 87.5 76.2 80.3 68.3 84.4 1013.9 313.9
5 Net-3 fused raw image 88.0 76.7 80.8 69.0 84.9 88.0 76.6 80.7 68.9 84.9 1093.9 350.4
6 CrackNet II raw range 92.6 24.7 36.1 24.0 39.8 92.5 24.7 36.0 23.9 39.7 2404.1 326.8
7 CrackNet II filtered range 90.9 41.8 53.2 39.3 57.3 90.8 42.4 53.7 39.7 57.7 2445.0 404.5
8 VGG16-FCN raw intensity 74.1 59.4 63.4 50.6 67.3 73.4 58.7 62.8 50.0 66.8 1199.4 351.5

119

Figure 4-31. Case I: Bar plots of the testing performance metrics: (a) average Precision; (b) average Recall;

(c) average F1; (d) average IOU; (e) average BF score; (f) training time; and (g) testing time.

The detailed performance statistics of the eight subcases are tabulated in Table 4-15 with the bold
font faced values indicating the best performance in each metric. Meanwhile, metrics including
the average Precision, Recall, F1 score, IOU, and BF score, which are evaluated on the test dataset,
are illustrated in Figure 4-31 (a-e). Besides, the training time and testing time by each DCNN are
also illustrated in Figure 4-31 (f) and (g), respectively. In Figure 4-31, the horizontal axis of each
plot refers to the four different types of image data: raw range, filtered range, raw intensity, and
fused raw image. Several observations can be made from Figure 4-31 and Table 4-15:

i) Comparison between the subcases No. 1 through 4: It can be observed as a general trend
that Net-2 with fused raw image (No. 4) yields much higher segmentation accuracy than Net-1
with raw range (No. 1), raw intensity (No. 2), and filtered range image data (No. 3). Meanwhile,

120

using raw intensity image leads to the worst segmentation performance, due to the existence of
low-contrast cracks and other image disturbances in the intensity image data. Taking the statistics
of the average F1 score as an example, by using Net-2 with the fused raw image data (No. 4), the
increase in the F1 score is 4.9% (vs. Net-1 with raw range image), 18.5% (vs. Net-1 with raw
intensity image), and 7.5% (vs. Net-1 with filtered range image), respectively. Considering that
Net-1 and Net-2 share the same architecture layout except the image input layer and the first
convolutional layer, such a significant improvement on the segmentation accuracy is attributed to
the proposed data fusion strategy. Also, despite the volume of image data is doubled during
analysis, applying data fusion does not result in a deteriorated model efficiency. The training and
testing time by Net-2 with fused raw image (No. 4) are only increased by 4.4% and 21.6%,
respectively, compared to the average time consumption by the other three subcases (No. 1, 2, and
3);

ii) Comparison between No. 4 and No.5: From Table 4-15, given the same type of image data
used (i.e., fused raw image), Net-3 (No. 5) has very similar performance as Net-2 (No. 4), where
Net-3 basically outperforms Net-2 by an increase of around 0.5% in all performance metrics.
However, Net-3 does require 7.9% and 11.4% more time than Net-2 on training and testing,
respectively. Note that Net-2 and Net-3 represent the “fuse-extract” and “extract-fuse” patterns,
with respect to the means to exploit the fused raw image. Judging from the segmentation accuracy,
it can be concluded that Net-3, which employs the “extract-fuse” pattern, leads to a slightly better
performance;

iii) Comparison between the proposed DCNNs (No. 1, 3, 2) and the benchmarks (No. 6, 7, 8):
For the subcases No. 1 and 6 both utilizing the raw range image, it can be seen that Net-1 (No. 1)
almost exceeds CrackNet II in every performance metric except the average Precision value. The
reason CrackNet II has very poor performance may be that it requires to apply a pre-processing
technique (i.e., surface flattening) to address the issue of surface variation [30] prior to DCNN
analysis. By comparing Net-1 (No. 3) against CrackNet II (No. 7), which are both trained and
tested on the filtered range image, Net-1 leads to higher values in the average Recall, F1, IOU, and
BF score on the test dataset, with an improvement of 26.3%, 21.6%, 21.9%, and 21.5%,
respectively. Still, the average Precision value by CrackNet II is 3.8% higher than by Net-2.
Regarding the DCNNs using intensity image data, Net-1 (No. 2) performs slightly better than
VGG16-FCN (No. 8), as measured by their metrics values. Net-1 results in higher values in the
average Precision, F1, IOU, and BF score with an improvement of 2.8%, 0.2%, 0.4%, and 1.4%,
respectively, while VGG16-FCN has a 1.0% higher average Recall value. Regarding the model
efficiency, the proposed DCNNs consume less time on both training and testing; for example, Net-
1 with filtered range image (No. 3) only consumes about 40.0% and 70.9% of the training and
testing time by CrackNet II (No. 7), respectively. It is thus demonstrated that the proposed DCNNs
are capable to achieve the same level or even better segmentation performance and efficiency
compared to the benchmarks;

iv) Comparison regarding the effects of image pre-processing: Net-1 is trained and tested by
the raw range image (No. 1) or filtered range image data (No. 3). Note that the raw range image
data contains image disturbances including surface variations, grooved patterns, and scanning
noises, while the filtered range images are free from such disturbances. However, the differences
between the subcases No. 1 and 3 in the testing metrics are very marginal, which are only -3.0%,

121

2.6%, 0.3%, 0.2%, and 0.2% for the average Precision, Recall, F1, IOU, and BF score, respectively.
The robustness of the proposed DCNN is shown in that it does not require any image pre-
processing procedures to address the image-related issues, and that its segmentation performance
does not deteriorate under the influence of the image disturbances in the raw range image data.
Another observation made on CrackNet II (No. 6 vs. 7) is that the image pre-processing procedure
does help improve the segmentation performance by CrackNet II, because it requires a procedure
to address the issue of surface variation in the range image data prior to DCNN analysis.

In addition to comparing the average values by the bar plots in Figure 4-31, the histograms of five
performance metrics, evaluated on the test dataset which contains 5005 images, are also provided
in Figure 4-32 and Figure 4-33. In the histogram plot, the horizontal axis is the percentage value
of the metric, and the vertical axis refers to the frequency counts. And, each column in both figures
represents a type of the performance metrics, which include the Precision, Recall, F1, IOU, and
BF score. Figure 4-32 focuses on comparing the proposed DCNNs with different types of image
data. Again, similar conclusions regarding the impact from heterogeneous image data can be drawn.
In Figure 4-32 (a), (b), and (c), Net-2 with fused raw image is compared against Net-1 with raw
range [Figure 4-32 (a)], raw intensity [Figure 4-32 (b)], and filtered range image [Figure 4-32 (c)].
Among the four subcases, Net-2 with fused raw image leads to the best segmentation performance,
indicated by the higher mean and less spread of its histograms. This result again demonstrates the
effectiveness of data fusion through cross-domain feature correlation to address the uncertainties
in the data. Meanwhile, Net-2 and Net-3, both of which exploit the fused raw image data, yield
very similar segmentation accuracy, as their histograms have a high degree of overlap in Figure
4-32 (d). Finally, by comparing the histograms by the subcases No. 1 (Net-1 with raw range image)
and No. 3 (Net-1 with filtered range image), a conclusion can be drawn that the image pre-
processing does not yield any significant improvement on the segmentation accuracy by Net-1,
because their histograms in Figure 4-32 (e) are highly overlapped with each other.

122

Figure 4-32. Case I: Histograms of the testing metrics by the proposed DCNNs: (a) Net-1 (raw range) vs. Net-2

(fused raw image); (b) Net-1 (raw intensity) vs. Net-2 (fused raw image); (c) Net-1 (filtered range) vs. Net-2
(fused raw range); (d) Net-3 (fused raw range) vs. Net-2 (fused raw range); and (e) Net-1 (raw range) vs. Net-1

(filtered range).

123

Figure 4-33. Case I: Histograms of the testing metrices by the proposed DCNNs and benchmarks: (a) Net-1
vs. CrackNet II with raw range image; (b) Net-1 vs. CrackNet II with filtered range image; and (c) Net-1 vs.

VGG16-FCN with raw intensity image.

Figure 4-33 illustrates the histograms by the proposed DCNNs and the benchmarks. As shown by
Figure 4-33 (a) and (b), when using the raw range or filtered range image for analysis, Net-1
outperforms CrackNet II by a significant level. The histograms of the Recall, F1, IOU, and BF
score by Net-1 are more concentrated to the right end of each plot, indicating more accurate and
consistent segmentation performance. Nevertheless, CrackNet II has better performance in terms
of the Precision value. Figure 4-33 (c) shows the comparison between Net-1 (No. 2) and VGG16-
FCN (No. 8), where their histograms overlay with each other. However, in general, the
performance by both Net-1 and VGG16-FCN with raw intensity image are similar and quite poor;
their histograms have a very large dispersion, indicating that a large proportion of the predicted
pixel label maps have very low metrics values.

124

Figure 4-34. Case I: examples of crack segmentation on image patches.

125

To further demonstrate the DCNN segmentation performance, prediction results on twelve image
patches with diverse data characteristics are illustrated in Figure 4-34. From the top to bottom of
Figure 4-34, image data including the raw range, filtered range, raw intensity image, and ground
truth pixel label map are displayed; then, the prediction results by different DCNNs are illustrated
sequentially. Meanwhile, the percentage values of three metrics including the F1, IOU, and BF
score are labelled on top of each predicted pixel label map. It can be seen in Figure 4-34 that the
image patches to be demonstrated have very diverse characteristics, such as surface variations,
grooved patterns, shallow cracks in range images, and low-contrast cracks in intensity images.
Judging from the metrics values, Net-2 with fused raw image data (No. 4) yields better
performance on almost all image patches than Net-1 with raw range (No. 1), filtered range (No.
3), and raw intensity image data (No. 2), demonstrating the effectiveness of the proposed data
fusion strategy. Meanwhile, Net-2 (No. 4) and Net-3 (No. 5), which utilize the fused raw image
data, have very similar segmentation performance. It is demonstrated that by leveraging the spatial
co-registration feature in the fused raw image data, the uncertainties (e.g., shallow cracks in range
images and low-contrast cracks in intensity images) can be alleviated through cross-domain feature
correlation. Regarding the benchmarks, the segmentation performance of CrackNet II with either
raw range or filtered range image data is not as good as the proposed DCNNs, especially when
grooved patterns (patches 3, 4, 5, 6 by No. 6) or shallow cracks (patches 11, 12 by No. 6 and 7)
exist. VGG16-FCN (No. 8) has very consistent performance on the intensity images, which yields
similar metrics values as the proposed Net-1 with intensity images (No. 2).

In addition, the effect of heterogeneous image fusion on the segmentation performance of the
proposed DCNNs (Net-1 and 2) is demonstrated in Figure 4-35, where another twelve image
patches suffering from the issues of shallow cracks in range images or/and low intensity contrast
in intensity images are tested by the proposed DCNNs. In Figure 4-35, the raw range image, raw
intensity image, ground truth, and prediction results (by Net-1 with raw range image, Net-1 with
raw intensity image, and Net-2 with fused raw image) are displayed from top to bottom. Again,
three metrics including F1, IOU, and BF score are labelled on top of each predicted pixel label
map. As can be seen in Figure 4-35 (a), when shallow cracks exist in the range images, Net-1 (No.
1) which only relies on raw range image is not able to detect the cracks with shallow depths; and,
vice versa for the intensity image cases in Figure 4-35 (b), where the low intensity contrast between
cracks and non-crack regions causes false negative detections by Net-1 with raw intensity image.
However, the proposed Net-2 which utilizes the fused raw image data can alleviate such image
disturbances existing in the individual data sources [Figure 4-35 (a) and (b)] and reduce false
negative detections through cross-domain feature correlation, leading to the highest segmentation
performance. Furthermore, the four image patches in Figure 4-35 (c) demonstrate a mixture of
shallow cracks in range images and low intensity contrast in intensity images. However, these two
types of issues do not occur at the same location. Thus, the information in the range and intensity
images complements each other, which has been leveraged by Net-2 when using the fused raw
images. More specifically, due to the image-related issues, Net-1 using either type of image data
alone yields false negative detections. By leveraging the fused raw image data, Net-2 can reduce
such uncertainties through cross-domain feature correlation, as indicated by the fact that the
prediction results by Net-2 yield the highest metrics values, and that the false negative detections
are effectively reduced as shown in the figure.

126

Figure 4-35. Case I: examples of data fusion to improve segmentation performance through cross-domain

feature correlation.

127

Figure 4-36. Case II: Segmentation performance on a concrete roadway surface: (a) raw range image; (b) filtered range image; (c) raw intensity image;

(d) ground truth; (e) predicted by Net-1 with raw range image; (f) Net-1 with filtered range image; (g) Net-1 with raw intensity image; (h) Net-2 with fused
raw image; (i) CrackNet II with raw range image; (j) CrackNet II with filtered range image; (k) VGG16-FCN with raw intensity image; and (l) Net-3 with

fused raw image.

128

• Case II: Demonstration of DCNN performance on a concrete roadway surface

After the DCNNs are trained and tested on image patches in Case I, Case II further demonstrates
their segmentation performance with real-world complexity by applying them on an entire
concrete roadway surface (3072×3072 pixels), representing a single lane of 6-meter long roadway.
Note that this roadway data has not participated in the training in Case I. Figure 4-36 (a-d) illustrate
the raw range, filtered range, raw intensity image, and ground truth label map of the roadway
surface, respectively. This roadway surface suffers from issues such as grooved patterns and
surface variations in the range image [see Figure 4-36 (a)], and low contrast between cracks and
non-crack regions in the intensity image as indicated by the circles in Figure 4-36 (c). Prediction
results by the proposed DCNNs and the benchmarks are displayed in Figure 4-36 (e-l), respectively,
with three performance metrics including the F1, IOU, and BF score labelled on top of each
predicted pixel label map. Meanwhile, the detailed statistics of these metrics together with the
testing time are tabulated in Table 4-16.

Table 4-16. Case II: Performance metrics.

When using the raw range image for analysis, Net-1 [Figure 4-36 (e)] shows good segmentation
performance, with the F1, IOU, and BF score as 80.5%, 67.3%, and 88.7%, respectively. However,
for the subcase of CrackNet II with raw range image, many false detections as shown in Figure
4-36 (i) are created due to the issues of grooved patterns and surface variations. Once the filtered
range image is utilized, in which the image-related issues are suppressed, CrackNet II [Figure 4-36
(j)] yields better performance than before [Figure 4-36 (i)]. Meanwhile, judging from the metrics,
the segmentation performance by Net-1 with filtered range [Figure 4-36 (f)] vs. raw range image
[Figure 4-36 (e)] is quite similar. In Figure 4-36 (g) and (k), where the prediction results by Net-1
and VGG16-FCN with raw intensity image are presented, it can be observed that both DCNNs
experience a significant deterioration in the segmentation performance due to the issue of low
intensity contrast between cracks and non-crack regions. Regarding the DCNN efficiency, as
shown in Table 4-16, the proposed DCNNs are more efficient than the benchmarks, where the
testing time by the proposed DCNNs is only up to 70% of by the benchmarks (e.g., Net-1 vs.
VGG16-FCN with raw intensity image).

Among all eight subcases in Case II, Net-2 [Figure 4-36 (h)] and 3 [Figure 4-36 (l)], which exploit
the fused raw image data, lead to much better performance than the other DCNNs relying on a
single type of image data. Through a comparison between Figure 4-36 (g) and (h), it is shown that,

Index Architecture Data type Testing metrics Testing
time (sec)

F1 (%) IOU (%) BF score (%)
1 Net-1 raw range 80.5 67.3 88.7 31.1
2 Net-1 raw intensity 71.6 56.1 89.9 28.3
3 Net-1 filtered range 81.3 68.8 76.5 28.9
4 Net-2 fused raw image 84.3 72.8 92.0 31.4
5 Net-3 fused raw image 84.6 73.2 93.1 38.3
6 CrackNet II raw range 39.3 27.8 28.7 68.3
7 CrackNet II filtered range 61.6 45.1 66.7 68.6
8 VGG16-FCN raw intensity 74.5 60.1 90.2 40.3

129

using the fused raw image data in Net-2 can address the issue of low contrast in the intensity image,
by referring to the pixel locations in the corresponding raw range image where crack patterns exist.
Accordingly, the segmentation performance by using the fused raw image is much better than
using the raw intensity data alone. Furthermore, judging from the performance metrics by Net-2
and 3, which both exploit the fused raw image data, Net-3 exceeds Net-2 by a marginal difference
as follows: 0.3%, 0.4%, and 1.1% in the F1, IOU, and BF score, respectively. Nevertheless, as
shown in Table 4-16, Net-2 yields less testing time than Net-3. It is thus demonstrated through
both Case I and II that, Net-3, representing the “extract-fuse” pattern, yields slightly better
segmentation performance than Net-2 which represents the “fuse-extract” pattern.

4.5.4 Limitations

Few limitations of this proposed image fusion methodology include: i) pixel-to-pixel spatial
correspondence between the range and intensity image data is a prerequisite of the proposed data
fusion process; ii) this methodology may have difficulties detecting cracks in image data which
suffers from both low contrast in the intensity image and shallow depths in the range image.

130

CHAPTER 5: DISCUSSION AND FUTURE WORK

In this chapter, first, summaries and conclusions are drawn from the experimental study section
for each proposed methodology; then, an overall evaluation and conclusion on this technical report
is provided.

5.1 Image Processing Technique for Robust Crack Detection Using Range Image Data

In section 3.1, a robust crack detection methodology utilizing frequency domain filtering and
contouring analysis on range image data is proposed. The proposed methodology relies on
elevation difference to detect cracks, assuming the cracks are lower than the surroundings in local
image regions. The use of range image instead of intensity image reduces the influence from
varying illumination condition, blemishes, and low contrast between crack pixels and their
surrounding pixels.

Frequency domain filtering techniques are applied as image pre-processing to address the
following issues: surface variations, image noises, and grooved patterns. Unlike traditional pre-
processing methods, which typically require subjective parameters, the frequency domain filtering
developed in this methodology is designed based on a physical relationship between the cutoff
frequency and crack width. The experimental results show that it can provide robust and consistent
results in practice and is independent from images or operating personnel.

After image pre-processing, a crack detection methodology based on contouring analysis is
developed to extract the cracks from the filtered range surface. In the experimental study (section
4.1), crack detection on three bridge deck surfaces utilizing the proposed methodology is presented.
The range surfaces vary drastically in noise level, average elevation, and crack pattern, etc. A
validation study using the precision-recall analysis is employed to examine the accuracy of the
proposed methodology. High metrics values are consistently achieved from the crack detection
examples on three range images, indicating the effectiveness and accuracy of the proposed
methodology on surface crack extraction.

Through this filter-based methodology, Challenges 2, 3, and 4 as described in section 1.2 are
effectively addressed. Nevertheless, because this methodology belongs to the category of non-
learning-based methodology, the uncertainties due to the image pre-processing procedure cannot
be completely eliminated, despite the robust performance of this methodology as demonstrated
through the experimental study. It is thus preferable to develop learning-based crack detection
methodologies for better performance and wider applicability. Besides, it is difficult for this
methodology to detect shallow cracks in range image data.

5.2 Deep Learning-Based Crack Classification

By offering an optimal DCNN architecture that utilizes raw range images, the methodology
proposed in section 3.2 tackled two issues that have not yet been thoroughly addressed in DCNN-
based crack classification research. The first issue lies in the disturbances in laser-scanned range
image data, including surface variations and non-crack patterns, which demands a crack

131

classification tool with robust performance. The second issue is related with the hyperparameter
selection upon using DCNN for roadway crack classification on laser-scanned range images. A
comprehensive comparative study is performed to address these issues.

In the study presented in section 4.2, four cases are performed:

i) Case I investigates the optimal hyperparameter values related with network structure,
which include network depth, kernel sizes, and network width. The 7-layer architecture with 7×7
convolutional kernels and ascending network widths yields the optimal performance among the
proposed DCNN candidates, which may be that it can best describe and reflect the real-world
complexity of the acquired laser-scanned range image data;

ii) Case II is focused on the selection of the hyperparameters that are related with training,
which include the mini-batch size, initial learning rate and learning rate drop factor, dropout factor,
and LReLU factor. The experimental results show that the optimal values of these hyperparameters
for roadway range image data are as follows: mini-batch size = 10; initial learning rate = 0.01;
learning rate drop factor = 0.8; dropout factor = 50%; LReLU factor = 0.01;

iii) Case III validates the performance of the proposed architecture on crack classification
through a comparison with four benchmark architectures. Consistent results on the F1 scores of
two test datasets of diverse image data are observed, showing the proposed architecture can
achieve a similar level of classification accuracy as the benchmarks but with a much higher
efficiency;

iv) In Case IV, the performance and robustness of the proposed DCNN classifier is further
demonstrated on a new dataset from actual roadway surveys, which contains three cracked image
surfaces contaminated with non-crack patterns. The predicted crack map with a high testing F1
score demonstrates the capability of the proposed methodology on detecting cracks under the
disturbances of many non-crack patterns such as grooves, pavement edges, and shoulder drop-offs.

The hyperparameter selection process developed in this study and the conclusions summarized
from the experiments can provide insights to similar civil engineering applications using laser-
scanned range images for roadway crack classification. This proposed methodology helps address
Challenge 5 (section 1.2) regarding the optimal hyperparameter configuration for DCNN-based
crack classification applications; moreover, it tackles Challenges 2 and 3 by directly takes raw
range images as the input without any pre-processing procedures. Still, this methodology may have
difficulties detecting cracks with shallow depths as exposed in section 4.2.4.

5.3 Deep Learning-Based Crack Segmentation

The proposed methodology in section 3.3 is focused on addressing the issues of surface variations
and grooved patterns in range image data, which are very challenging to current DCNN-based
roadway crack segmentation applications using range images.

132

In the experimental study (section 4.3), two experimental cases are performed. Case I is designed
to investigate the influences from different architecture layouts on the segmentation performance.
The following concluding remarks from Case I are summarized:

i) Based on the results of the proposed DCNN architectures, the use of residual connections
yields higher metrics values, and it prevents performance degradation especially in deeper
architectures;

ii) From the illustrative results in Figure 4-20, it is shown that the proposed Net-2 through
Net-6 can achieve high segmentation performance under the disturbance of surface variations and
grooves due to their deep architecture layouts with residual connections;

iii) Among the proposed DCNN architectures, Net-4 leads to the highest values in all the
performance metrics on the test dataset, thus it is determined as the optimal architecture for
roadway crack segmentation on laser-scanned range images in this study;

iv) Through a comparison between Net-4 and CrackNet II, it is demonstrated that Net-4
outperforms the latter on both the segmentation accuracy and efficiency on the test dataset.

Furthermore, Case II is performed to demonstrate the segmentation performance of Net-4. Crack
maps are generated for three roadway surfaces which contain different levels of surface variations
and grooved patterns. It is shown that Net-4 achieves very high and consistent metrics values in
all three roadway images. The robustness of the proposed Net-4 determined in this study is
demonstrated in that it directly processes raw range images without any pre-processing procedure,
and that it yields accurate and consistent segmentation performance in both Case I and II under
image disturbances including grooves and surface variations.

By leveraging this DCNN-based crack segmentation methodology, Challenge 6 as described in
section 1.2 can be properly addressed. However, the performance of this methodology may
deteriorate under the scenario of shallow cracks, as demonstrated in section 4.3.4.

5.4 Deep Learning-Based Data Fusion for Crack Classification

The DCNN-based roadway crack classification methodology proposed in section 3.4.3
investigates the DCNN performance from the perspective of heterogeneous image data. It is
focused on three objectives: i) demonstrating the impacts of image pre-processing, and offering
suggestions regarding the use of image pre-processing in practical situations; ii) proposing a
heterogeneous image fusion approach based on hyperspectral imaging to integrate the information
in the raw intensity and range image data; and, investigating the effects of heterogeneous image
data by considering four types of image data: the raw intensity, raw range, filtered range, and
fused raw image data; and iii) proposing DCNN architectures which represent different means to
exploit the fused image data, and determining the layout to yield better classification performance
with data fusion.

In section 4.4, an experimental study is carried out to train and test the proposed roadway crack
classification DCNNs. The experimental study consists of two cases:

133

Case I investigates the effect of heterogeneous image data on DCNN performance. A deep
architecture which takes single-channel input, denoted as Net-A, is designed to process the raw
intensity, raw range, and filtered range data; Net-B is modified from Net-A to process the fused
raw image data. Besides, a benchmark architecture is evaluated using the same image data for
comparison purposes. In total, seven subcases are performed in Case I. Performance metrics
including Accuracy, Precision, Recall, and F1 are calculated to measure the classification
performance.

i) It is clearly observed that architectures trained and tested on raw intensity image result in
the worst classification performance due to low contrast issue; and, using raw range image instead
of intensity image yields a significant amount of improvement on the overall classification
performance;

ii) Through the comparison between the subcases using raw range image vs. filtered range
image, it is shown that image pre-processing on the range image improves the performance by a
noticeable margin; but considering the trade-off from the additional pre-processing procedure, it
is still preferable to directly use the raw range image for analysis, especially under real-world
scenarios;

iii) The use of fused raw image data yields the highest classification performance, because this
approach takes advantage of the spatial co-registration feature generated from the fusion process.

It can be concluded from Case I that heterogeneous image fusion is a better alternative to image
pre-processing, as an effective strategy to address the issues in range images or intensity images
by cross-domain feature extraction. Through Case I, the first two objectives of this study are
fulfilled;

Case II further discusses the better configuration to exploit the fused raw image data. Another deep
architecture that also takes dual-channel image input is proposed in this study, denoted as Net-C.
The major difference between Net-B and Net-C is that the former employs a “fuse-extract” pattern
to directly extract the information from the fused raw image input, while the latter represents a
“extract-fuse” pattern to first extract information from separate channels and then combine the
high-level information. Performance metrics demonstrate that the “fuse-extract” scheme is more
effective and efficient. Through Case II, the third objective of this study is fulfilled.

Despite the high classification performance of the proposed methodology based on heterogeneous
image fusion, the resolution of detected cracks is limited, because this methodology is a patch-
based approach.

5.5 Deep Learning-Based Data Fusion for Crack Segmentation

The methodology developed in section 3.4.4 explores the feasibility and strategy of heterogeneous
image data fusion for DCNN-based segmentation. A novel heterogeneous image fusion strategy is
proposed to address the image-related issues and uncertainties by combining the information in
raw range and raw intensity image data with spatial correlation. In total, four types of image data
including the raw range, raw intensity, filtered range, and fused raw image data are considered in

134

this study. And, three encoder-decoder networks, namely, Net-1, 2, and 3, are developed to analyze
these different types of image data.

Case I of the experimental study focuses on demonstrating the impacts from heterogeneous image
data. Several observations and conclusions are briefly summarized as follows:

i) Among the four types of image data used for DCNN training and testing, the fused raw
image data leads to the most accurate and robust segmentation performance. The advantage of
exploiting the spatial co-registration feature in the fused raw image data to reduce uncertainty is
demonstrated;

ii) Between the two DCNNs (Net-2 vs. Net-3) proposed to take fused raw image input, Net-
3, which represents the “extract-fuse” pattern through a two-stream encoder layout, has slightly
better performance than Net-2 representing the “fuse-extract” pattern;

iii) For the proposed DCNNs, image pre-processing on the raw range image is not necessary,
because the performance metrics are not significantly improved upon applying image pre-
processing. Also, the robustness of the proposed DCNNs against image-related issues existing in
the raw range image data such as surface variations and grooved patterns is demonstrated;

iv) Through a series of comparisons, it is shown that the proposed DCNNs have the same level
or higher segmentation performance than the two benchmarks, namely the VGG16-FCN and
CrackNet II.

In Case II, the segmentation performance by the trained DCNNs is further demonstrated on a
concrete roadway surface, which suffers from multiple image-related issues including surface
variations and grooved patterns in the range image, and low intensity contrast in the intensity image.
While other DCNNs expose issues such as false detections due to grooved patterns in the range
image or low contrast in the intensity image, the proposed DCNNs with fused raw image input are
robust against such image disturbances through cross-domain feature correlation, leading to the
highest segmentation accuracy.

Through this study, it is suggested that heterogeneous data fusion be used as an effective strategy
for DCNN-based roadway crack segmentation, which introduces robustness against image
disturbances.

5.6 Concluding Remarks

This technical report is focused on developing an image-based condition assessment framework
for civil infrastructures by leveraging advanced sensing and imaging technologies. Four research
topics, as introduced in section 1.3, form a comprehensive and self-contained investigation and
exploration on image-based crack detection. The proposed methodologies evolve from non-
learning-based to learning-based, resulting in wider applicability and less subjectivity in cracking
assessment. Meanwhile, from the perspective of image data, thorough investigations are performed
through a series of comparative studies to determine the optimal strategy to exploit the image data
as the fused raw image to reduce uncertainty, offering knowledge and insights to future similar

135

applications. Regarding the detection resolution, research efforts are made to improve the
resolution of the proposed methodologies from patch-level to pixel-level by developing more
advanced DCNN architectures, thus leading to more accurate detection performance. Overall, all
the challenges as described in section 1.2 are systematically investigated and properly addressed
through this technical report.

Future research work includes: i) developing efficient methodologies to extract crack features such
as area and width; ii) developing crack detection frameworks for asphalt pavements by leveraging
the proposed DCNN-based methodologies; iii) developing robust DCNN-based crack
segmentation methodologies that can distinguish cracks from other non-crack patterns including
joints, shoulder drop-offs, and pavement edges.

136

REFERENCES

1. Total Construction Spending, U.S. Census Bureau, May 1, 2020,
https://www.census.gov/construction/c30/pdf/totsa.pdf.

2. Total Construction Spending, U.S. Census Bureau, May 3, 2010,
https://www.census.gov/construction/c30/pdf/pr201003.pdf.

3. Moving Ahead for Progress in the 21st Century Act (MAP-21): A Summary of Highway
Provisions, Office of Policy and Governmental Affairs, Federal Highway Administration,
U.S. Department of Transportation, 2012,
https://www.fhwa.dot.gov/map21/summaryinfo.cfm.

4. Transportation Asset Management Plans (TAMP), Office of Asset Management, Federal
Highway Administration, U.S. Department of Transportation, 2012,
https://www.fhwa.dot.gov/asset/plans.cfm.

5. Highway Performance Monitoring System (HPMS), Office of Highway Policy Information,
Federal Highway Administration, U.S. Department of Transportation, 1978,
https://www.fhwa.dot.gov/policyinformation/hpms.cfm.

6. C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, P. Fieguth, A review on computer vision based
defect detection and condition assessment of concrete and asphalt civil infrastructure,
Advanced Engineering Informatics 29 (2) (2015), pp. 196-210,
https://doi.org/10.1016/j.aei.2015.01.008.

7. C. Jiang, A crack detection and diagnosis methodology for automated pavement condition
evaluation, Ph.D. Thesis, School of Civil and Environmental Engineering, Georgia
Institute of Technology, 2015, http://hdl.handle.net/1853/55524.

8. J. G. Jang, H. Kim, T. Kim, B. Min, H. Lee, Improved flexural fatigue resistance of PVA fiber-
reinforced concrete subjected to freezing and thawing cycles, Construction and Building
Materials 59 (2014), pp. 129-135, https://doi.org/10.1016/j.conbuildmat.2014.02.040.

9. Y. Cheng, Y. Zhang, Y. Jiao, J. Yang, Quantitative analysis of concrete property under effects
of crack, freeze-thaw and carbonation, Construction and Building Materials 129 (2016),
pp. 106-115, https://doi.org/10.1016/j.conbuildmat.2016.10.113.

10. M. D. Thomas, B. Fournier, K. J. Folliard, Y. Resendez, Alkali-Silica Reactivity Field
Identification Handbook, (2011), Accessed, https://rosap.ntl.bts.gov/view/dot/42676.

11. R. Adhikari, O. Moselhi, A. Bagchi, Image-based retrieval of concrete crack properties for
bridge inspection, Automation in construction 39 (2014), pp. 180-194,
https://doi.org/10.1016/j.autcon.2013.06.011.

12. Y. Xu, Y. Bao, J. Chen, W. Zuo, H. Li, Surface fatigue crack identification in steel box girder
of bridges by a deep fusion convolutional neural network based on consumer-grade camera
images, Structural Health Monitoring (2018), pp. 1475921718764873,
https://doi.org/10.1177/1475921718764873.

13. E. Zalama, J. Gómez‐García‐Bermejo, R. Medina, J. Llamas, Road crack detection using
visual features extracted by Gabor filters, Computer‐Aided Civil and Infrastructure
Engineering 29 (5) (2014), pp. 342-358, https://doi.org/10.1111/mice.12042.

14. S. Bang, S. Park, H. Kim, H. Kim, Encoder‐decoder network for pixel‐level road crack
detection in black‐box images, Computer‐Aided Civil and Infrastructure Engineering
34 (8) (2019), pp. 713-727, https://doi.org/10.1111/mice.12440.

https://www.census.gov/construction/c30/pdf/totsa.pdf
https://www.census.gov/construction/c30/pdf/pr201003.pdf
https://www.fhwa.dot.gov/map21/summaryinfo.cfm
https://www.fhwa.dot.gov/asset/plans.cfm
https://www.fhwa.dot.gov/policyinformation/hpms.cfm
https://doi.org/10.1016/j.aei.2015.01.008
http://hdl.handle.net/1853/55524
https://doi.org/10.1016/j.conbuildmat.2014.02.040
https://doi.org/10.1016/j.conbuildmat.2016.10.113
https://rosap.ntl.bts.gov/view/dot/42676
https://doi.org/10.1016/j.autcon.2013.06.011
https://doi.org/10.1177/1475921718764873
https://doi.org/10.1111/mice.12042
https://doi.org/10.1111/mice.12440

137

15. J. C. Cheng, M. Wang, Automated detection of sewer pipe defects in closed-circuit television
images using deep learning techniques, Automation in Construction 95 (2018), pp. 155-
171, https://doi.org/10.1016/j.autcon.2018.08.006.

16. H. W. Huang, Q. T. Li, D. M. Zhang, Deep learning based image recognition for crack and
leakage defects of metro shield tunnel, Tunnelling and Underground Space Technology 77
(2018), pp. 166-176, https://doi.org/10.1016/j.tust.2018.04.002.

17. M. Moore, B. M. Phares, B. Graybeal, D. Rolander, G. Washer, J. Wiss, Reliability of visual
inspection for highway bridges, volume I, (2001), Accessed,
https://rosap.ntl.bts.gov/view/dot/33883.

18. M. R. Jahanshahi, S. F. Masri, C. W. Padgett, G. S. Sukhatme, An innovative methodology for
detection and quantification of cracks through incorporation of depth perception, Machine
Vision and Applications (2013), pp. 1-15, https://doi.org/10.1007/s00138-011-0394-0.

19. Y. C. J. Tsai, F. Li, Critical assessment of detecting asphalt pavement cracks under different
lighting and low intensity contrast conditions using emerging 3D laser technology, Journal
of Transportation Engineering 138 (5) (2012), pp. 649-656,
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000353.

20. B. Peng, K. C. Wang, C. Chen, Automatic Crack Detection by Multi-Seeding Fusion on 1mm
Resolution 3D Pavement Images, in: T&DI Congress 2014: Planes, Trains, and
Automobiles, 2014, pp. 543-552, https://doi.org/10.1061/9780784413586.052.

21. M. R. Jahanshahi, F. Jazizadeh, S. F. Masri, B. Becerik-Gerber, Unsupervised approach for
autonomous pavement-defect detection and quantification using an inexpensive depth
sensor, Journal of Computing in Civil Engineering 27 (6) (2012), pp. 743-754,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245.

22. E. Salari, G. Bao, Automated pavement distress inspection based on 2D and 3D information,
in: Electro/Information Technology (EIT), 2011 IEEE International Conference on, IEEE,
2011, pp. 1-4, https://doi.org/10.1109/EIT.2011.5978575.

23. L. Bursanescu, M. Bursanescu, M. Hamdi, A. Lardigue, D. Paiement, Three-dimensional
infrared laser vision system for road surface features analysis, in: ROMOPTO 2000: Sixth
Conference on Optics, Vol. 4430, International Society for Optics and Photonics, 2001, pp.
801-809, https://doi.org/10.1117/12.432808.

24. H. Cheng, J.-R. Chen, C. Glazier, Y. Hu, Novel approach to pavement cracking detection based
on fuzzy set theory, Journal of Computing in Civil Engineering 13 (4) (1999), pp. 270-280,
https://doi.org/10.1061/(ASCE)0887-3801(1999)13:4(270).

25. K. C. P. Wang, Elements of automated survey of pavements and a 3D methodology, Journal
of Modern Transportation 19 (1) (2011), pp. 51-57, https://doi.org/10.1007/BF03325740.

26. A. Zhang, Q. Li, K. C. P. Wang, S. Qiu, Matched filtering algorithm for pavement cracking
detection, Transportation Research Record: Journal of the Transportation Research Board
(2367) (2013), pp. 30-42, https://doi.org/10.3141/2367-04.

27. Q. Zou, Y. Cao, Q. Li, Q. Mao, S. Wang, CrackTree: Automatic crack detection from pavement
images, Pattern Recognition Letters 33 (3) (2012), pp. 227-238,
https://doi.org/10.1016/j.patrec.2011.11.004.

28. Y. Zhou, F. Wang, N. Meghanathan, Y. Huang, Seed-based approach for automated crack
detection from pavement images, Transportation Research Record: Journal of the
Transportation Research Board (2589) (2016), pp. 162-171, https://doi.org/10.3141/2589-
18.

https://doi.org/10.1016/j.autcon.2018.08.006
https://doi.org/10.1016/j.tust.2018.04.002
https://rosap.ntl.bts.gov/view/dot/33883
https://doi.org/10.1007/s00138-011-0394-0
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000353
https://doi.org/10.1061/9780784413586.052
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245
https://doi.org/10.1109/EIT.2011.5978575
https://doi.org/10.1117/12.432808
https://doi.org/10.1061/(ASCE)0887-3801(1999)13:4(270
https://doi.org/10.1007/BF03325740
https://doi.org/10.3141/2367-04
https://doi.org/10.1016/j.patrec.2011.11.004
https://doi.org/10.3141/2589-18
https://doi.org/10.3141/2589-18

138

29. S. Zhou, W. Song, Robust image-based surface crack detection using range data, Journal of
Computing in Civil Engineering 34 (2) (2020), pp. 04019054,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000873.

30. Z. Tong, J. Gao, H. Zhang, Innovative method for recognizing subgrade defects based on a
convolutional neural network, Construction and Building Materials 169 (2018), pp. 69-82,
https://doi.org/10.1016/j.conbuildmat.2018.02.081.

31. S. Zhou, W. Song, Deep learning-based roadway crack classification using laser-scanned range
images: A comparative study on hyperparameter selection, Automation in Construction
114 (2020), pp. 103171, https://doi.org/10.1016/j.autcon.2020.103171.

32. M. Salman, S. Mathavan, K. Kamal, M. Rahman, Pavement crack detection using the Gabor
filter, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC),
IEEE, 2013, pp. 2039-2044, https://doi.org/10.1109/ITSC.2013.6728529.

33. T. Nishikawa, J. Yoshida, T. Sugiyama, Y. Fujino, Concrete crack detection by multiple
sequential image filtering, Computer‐Aided Civil and Infrastructure Engineering 27 (1)
(2012), pp. 29-47, https://doi.org/10.1111/j.1467-8667.2011.00716.x.

34. T. Merazi-Meksen, M. Boudraa, B. Boudraa, Mathematical morphology for TOFD image
analysis and automatic crack detection, Ultrasonics 54 (6) (2014), pp. 1642-1648,
https://doi.org/10.1016/j.ultras.2014.03.005.

35. M. R. Jahanshahi, S. F. Masri, Adaptive vision-based crack detection using 3D scene
reconstruction for condition assessment of structures, Automation in Construction 22
(2012), pp. 567-576, https://doi.org/10.1016/j.autcon.2011.11.018.

36. W. Ouyang, B. Xu, Pavement cracking measurements using 3D laser-scan images,
Measurement Science and Technology 24 (10) (2013), pp. 105204,
https://doi.org/10.1088/0957-0233/24/10/105204.

37. T. Yamaguchi, S. Hashimoto, Fast crack detection method for large-size concrete surface
images using percolation-based image processing, Machine Vision and Applications 21 (5)
(2010), pp. 797-809, https://doi.org/10.1007/s00138-009-0189-8.

38. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts,
2016, ISBN: 0262337371.

39. Y. J. Cha, W. Choi, O. Büyüköztürk, Deep learning-based crack damage detection using
convolutional neural networks, Computer-Aided Civil and Infrastructure Engineering 32
(5) (2017), pp. 361-378, https://doi.org/10.1111/mice.12263.

40. Y. Fei, K. C. P. Wang, A. Zhang, C. Chen, J. Q. Li, Y. Liu, G. Yang, B. Li, Pixel-level cracking
detection on 3D asphalt pavement images through deep-learning-based CrackNet-V, IEEE
Transactions on Intelligent Transportation Systems (2019),
https://doi.org/10.1109/TITS.2019.2891167.

41. K. Zhang, H. Cheng, B. Zhang, Unified approach to pavement crack and sealed crack detection
using preclassification based on transfer learning, Journal of Computing in Civil
Engineering 32 (2) (2018), pp. 04018001, https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000736.

42. A. Zhang, K. C. P. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu, J. Q. Li, C. Chen,
Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐
learning network, Computer‐Aided Civil and Infrastructure Engineering 32 (10) (2017),
pp. 805-819, https://doi.org/10.1111/mice.12297.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000873
https://doi.org/10.1016/j.conbuildmat.2018.02.081
https://doi.org/10.1016/j.autcon.2020.103171
https://doi.org/10.1109/ITSC.2013.6728529
https://doi.org/10.1111/j.1467-8667.2011.00716.x
https://doi.org/10.1016/j.ultras.2014.03.005
https://doi.org/10.1016/j.autcon.2011.11.018
https://doi.org/10.1088/0957-0233/24/10/105204
https://doi.org/10.1007/s00138-009-0189-8
https://doi.org/10.1111/mice.12263
https://doi.org/10.1109/TITS.2019.2891167
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736
https://doi.org/10.1111/mice.12297

139

43. B. Khaleghi, A. Khamis, F. O. Karray, S. N. Razavi, Multisensor data fusion: A review of the
state-of-the-art, Information Fusion 14 (1) (2013), pp. 28-44,
https://doi.org/10.1016/j.inffus.2011.08.001.

44. L. Wang, Heterogeneous data and big data analytics, Automatic Control and Information
Sciences 3 (1) (2017), pp. 8-15, http://pubs.sciepub.com/acis/3/1/3.

45. W. Elmenreich, R. Leidenfrost, Fusion of heterogeneous sensors data, in: 2008 International
Workshop on Intelligent Solutions in Embedded Systems, IEEE, 2008, pp. 1-10,
https://doi.org/10.1109/CISP.2010.5647496.

46. I. Abdel-Qader, O. Abudayyeh, M. E. Kelly, Analysis of edge-detection techniques for crack
identification in bridges, Journal of Computing in Civil Engineering 17 (4) (2003), pp. 255-
263, https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255).

47. S. Hashimoto, Practical image measurement of crack width for real concrete structure,
Electronics and Communications in Japan 92 (10) (2009), pp. 1-12,
https://doi.org/10.1002/ecj.10151.

48. Z. Zhu, S. German, I. Brilakis, Visual retrieval of concrete crack properties for automated post-
earthquake structural safety evaluation, Automation in Construction 20 (7) (2011), pp. 874-
883, https://doi.org/10.1016/j.autcon.2011.03.004.

49. Y. C. J. Tsai, V. Kaul, R. M. Mersereau, Critical assessment of pavement distress segmentation
methods, Journal of transportation engineering 136 (1) (2009), pp. 11-19,
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000051.

50. O. Alekseychuk, Detection of crack-like indications in digital radiography by global
optimisation of a probabilistic estimation function, (2006),
https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/079/37079015.pdf.

51. Y. Huang, B. Xu, Automatic inspection of pavement cracking distress, Journal of Electronic
Imaging 15 (1) (2006), pp. 013017, https://doi.org/10.1117/1.2177650.

52. Y. Fujita, Y. Hamamoto, A robust automatic crack detection method from noisy concrete
surfaces, Machine Vision and Applications 22 (2) (2011), pp. 245-254,
https://doi.org/10.1007/s00138-009-0244-5.

53. Y. Huang, Y. C. J. Tsai, Dynamic programming and connected component analysis for an
enhanced pavement distress segmentation algorithm, Transportation Research Record:
Journal of the Transportation Research Board (2225) (2011), pp. 89-98,
https://doi.org/10.3141/2225-10.

54. L. Li, L. Sun, G. Ning, S. Tan, Automatic pavement crack recognition based on BP neural
network, PROMET-Traffic&Transportation 26 (1) (2014), pp. 11-22,
https://doi.org/10.7307/ptt.v26i1.1477.

55. K. C. P. Wang, W. Gong, R. P. Elliott, A feasibility study on data automation for
comprehensive pavement condition survey, in: Proc. of 6th Internat. Conference on
Managing Pavements., 2004,
https://www.researchgate.net/profile/Kelvin_Wang3/publication/267238769_A_Feasibilit
y_Study_on_Data_Automation_for_Comprehensive_Pavement_Condition_Survey/links/
555c772608aec5ac22331d36.pdf.

56. Z. Hou, K. C. P. Wang, W. Gong, Experimentation of 3D pavement imaging through
stereovision, in: International Conference on Transportation Engineering 2007, 2007, pp.
376-381, https://doi.org/10.1061/40932(246)62.

https://doi.org/10.1016/j.inffus.2011.08.001
http://pubs.sciepub.com/acis/3/1/3
https://doi.org/10.1109/CISP.2010.5647496
https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255
https://doi.org/10.1002/ecj.10151
https://doi.org/10.1016/j.autcon.2011.03.004
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000051
https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/079/37079015.pdf
https://doi.org/10.1117/1.2177650
https://doi.org/10.1007/s00138-009-0244-5
https://doi.org/10.3141/2225-10
https://doi.org/10.7307/ptt.v26i1.1477
https://www.researchgate.net/profile/Kelvin_Wang3/publication/267238769_A_Feasibility_Study_on_Data_Automation_for_Comprehensive_Pavement_Condition_Survey/links/555c772608aec5ac22331d36.pdf
https://www.researchgate.net/profile/Kelvin_Wang3/publication/267238769_A_Feasibility_Study_on_Data_Automation_for_Comprehensive_Pavement_Condition_Survey/links/555c772608aec5ac22331d36.pdf
https://www.researchgate.net/profile/Kelvin_Wang3/publication/267238769_A_Feasibility_Study_on_Data_Automation_for_Comprehensive_Pavement_Condition_Survey/links/555c772608aec5ac22331d36.pdf
https://doi.org/10.1061/40932(246)62

140

57. K. C. P. Wang, W. Gong, Automated pavement distress survey: a review and a new direction,
in: Pavement Evaluation Conference, 2002, pp. 21-25,
https://www.researchgate.net/profile/Kelvin_Wang3/publication/238694797_Automated_
Pavement_Distress_Survey_A_Review_and_A_New_Direction/links/555c772808ae91e7
5e774088.pdf.

58. M. Torok, M. Fard, K. Kochersberger, Post-Disaster robotic building assessment: Automated
3D crack detection from image-based reconstructions, in: International Conference on
Computing in Civil Engineering, 2012, pp. 397-404,
https://doi.org/10.1061/9780784412343.0050.

59. M. R. Jahanshahi, S. F. Masri, A new methodology for non-contact accurate crack width
measurement through photogrammetry for automated structural safety evaluation, Smart
Materials and Structures 22 (3) (2013), pp. 035019, https://doi.org/10.1088/0964-
1726/22/3/035019.

60. K. N. Snavely, Scene Reconstruction and Visualization from Internet Photo Collections,
University of Washington, 2008,
https://www.cs.cornell.edu/~snavely/publications/thesis/thesis.pdf.

61. Y. C. J. Tsai, C. Jiang, Z. Wang, Pavement crack detection using high-resolution 3D line laser
imaging technology, in: 7th RILEM International Conference on Cracking in Pavements:
Mechanisms, Modeling, Testing, Detection and Prevention Case Histories, Springer
Netherlands, Dordrecht, 2012, pp. 169-178, https://doi.org/10.1007/978-94-007-4566-
7_17.

62. Y. C. J. Tsai, A. Chatterjee, C. Jiang, Challenges and lessons from the successful
implementation of automated road condition surveys on a large highway system, Signal
Processing Conference (EUSIPCO), 2017 25th European, IEEE, 2017, pp. 2031-2035,
https://doi.org/10.23919/EUSIPCO.2017.8081566.

63. J. Laurent, D. Lefebvre, E. Samson, Development of a new 3D transverse laser profiling system
for the automatic measurement of road cracks, in: Symposium on Pavement Surface
Characteristics, 6th, 2008, Portoroz, Slovenia., 2008, https://trid.trb.org/view/1151548.

64. A. Zhang, K. C. P. Wang, R. Ji, Q. J. Li, Efficient system of cracking-detection algorithms
with 1-mm 3D-surface models and performance measures, Journal of Computing in Civil
Engineering 30 (6) (2016), pp. 04016020, https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000581.

65. C. Jiang, Y. C. J. Tsai, Enhanced crack segmentation algorithm using 3D pavement data,
Journal of Computing in Civil Engineering 30 (3) (2015), pp. 04015050,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000526.

66. B. J. Lee, H. D. Lee, Position‐invariant neural network for digital pavement crack analysis,
Computer‐Aided Civil and Infrastructure Engineering 19 (2) (2004), pp. 105-118,
https://doi.org/10.1111/j.1467-8667.2004.00341.x.

67. T. Saar, O. Talvik, Automatic asphalt pavement crack detection and classification using neural
networks, in: 12th Biennial Baltic Electronics Conference, Tallinn, Estonia, 2010, pp. 345-
348, https://doi.org/10.1109/BEC.2010.5630750.

68. G. Moussa, K. Hussain, A new technique for automatic detection and parameters estimation
of pavement crack, in: 4th International Multi-Conference on Engineering Technology
Innovation, Orlando, Florida, 2011,
https://pdfs.semanticscholar.org/0cdc/86650ec3dbed96e01a2bc5ecac05e6ab6002.pdf.

https://www.researchgate.net/profile/Kelvin_Wang3/publication/238694797_Automated_Pavement_Distress_Survey_A_Review_and_A_New_Direction/links/555c772808ae91e75e774088.pdf
https://www.researchgate.net/profile/Kelvin_Wang3/publication/238694797_Automated_Pavement_Distress_Survey_A_Review_and_A_New_Direction/links/555c772808ae91e75e774088.pdf
https://www.researchgate.net/profile/Kelvin_Wang3/publication/238694797_Automated_Pavement_Distress_Survey_A_Review_and_A_New_Direction/links/555c772808ae91e75e774088.pdf
https://doi.org/10.1061/9780784412343.0050
https://doi.org/10.1088/0964-1726/22/3/035019
https://doi.org/10.1088/0964-1726/22/3/035019
https://www.cs.cornell.edu/%7Esnavely/publications/thesis/thesis.pdf
https://doi.org/10.1007/978-94-007-4566-7_17
https://doi.org/10.1007/978-94-007-4566-7_17
https://doi.org/10.23919/EUSIPCO.2017.8081566
https://trid.trb.org/view/1151548
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000581
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000581
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000526
https://doi.org/10.1111/j.1467-8667.2004.00341.x
https://doi.org/10.1109/BEC.2010.5630750
https://pdfs.semanticscholar.org/0cdc/86650ec3dbed96e01a2bc5ecac05e6ab6002.pdf

141

69. D. Xie, L. Zhang, L. Bai, Deep learning in visual computing and signal processing, Applied
Computational Intelligence and Soft Computing 2017 (2017),
https://doi.org/10.1155/2017/1320780.

70. L. Zhang, F. Yang, Y. D. Zhang, Y. J. Zhu, Road crack detection using deep convolutional
neural network, in: 2016 IEEE International Conference on Image Processing, Phoenix,
Arizona, 2016, pp. 3708-3712, https://doi.org/10.1109/ICIP.2016.7533052.

71. S. Park, S. Bang, H. Kim, H. Kim, Patch-based crack detection in black box images using
convolutional neural networks, Journal of Computing in Civil Engineering 33 (3) (2019),
pp. 04019017, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000831.

72. R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1440-1448,
http://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-
CNN_ICCV_2015_paper.pdf.

73. S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with region
proposal networks, in: Advances in neural information processing systems, 2015, pp. 91-
99, http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-
region-proposal-networks.pdf.

74. Y. J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, O. Büyüköztürk, Autonomous structural visual
inspection using region‐ based deep learning for detecting multiple damage types,
Computer‐Aided Civil and Infrastructure Engineering 33 (9) (2018), pp. 731-747,
https://doi.org/10.1111/mice.12334.

75. H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road damage detection using deep
neural networks with images captured through a smartphone, arXiv preprint
arXiv:1801.09454 (2018), https://arxiv.org/abs/1801.09454.

76. Y. Xue, Y. Li, A fast detection method via region‐based fully convolutional neural networks
for shield tunnel lining defects, Computer‐Aided Civil and Infrastructure Engineering 33
(8) (2018), pp. 638-654, https://doi.org/10.1111/mice.12367.

77. X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, X. Yang, Automatic pixel‐level crack detection
and measurement using fully convolutional network, Computer ‐ Aided Civil and
Infrastructure Engineering 33 (12) (2018), pp. 1090-1109,
https://doi.org/10.1111/mice.12412.

78. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv preprint arXiv:1409.1556 (2014), https://arxiv.org/abs/1409.1556.

79. Q. Zou, Z. Zhang, Q. Li, X. Qi, Q. Wang, S. Wang, Deepcrack: Learning hierarchical
convolutional features for crack detection, IEEE Transactions on Image Processing 28 (3)
(2018), pp. 1498-1512, https://doi.org/10.1109/TIP.2018.2878966.

80. V. Badrinarayanan, A. Handa, R. Cipolla, Segnet: A deep convolutional encoder-decoder
architecture for robust semantic pixel-wise labelling, arXiv preprint arXiv:1505.07293
(2015).

81. O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image
segmentation, in: International Conference on Medical image computing and computer-
assisted intervention, Springer, 2015, pp. 234-241, https://arxiv.org/pdf/1505.04597.pdf.

82. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 30th IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2016, pp.

https://doi.org/10.1155/2017/1320780
https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000831
http://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
http://openaccess.thecvf.com/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://doi.org/10.1111/mice.12334
https://arxiv.org/abs/1801.09454
https://doi.org/10.1111/mice.12367
https://doi.org/10.1111/mice.12412
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TIP.2018.2878966
https://arxiv.org/pdf/1505.04597.pdf

142

770-778,
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_C
VPR_2016_paper.pdf.

83. C. V. Dung, Autonomous concrete crack detection using deep fully convolutional neural
network, Automation in Construction 99 (2019), pp. 52-58,
https://doi.org/10.1016/j.autcon.2018.11.028.

84. C. Tan, N. Uddin, Y. M. Mohammed, Deep Learning-Based Crack Detection Using Mask R-
CNN Technique, in: 9th International Conference on Structural Health Monitoring of
Intelligent Infrastructure, 2019,
https://www.researchgate.net/profile/Chengjun_Tan/publication/337885795_Deep_Learn
ing-Based_Crack_Detection_Using_Mask_R-
CNN_Technique/links/5df0771ba6fdcc2837177db4/Deep-Learning-Based-Crack-
Detection-Using-Mask-R-CNN-Technique.pdf.

85. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2961-2969,
http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-
CNN_ICCV_2017_paper.pdf.

86. Y. Bengio, I. Goodfellow, A. Courville, Deep learning, Citeseer, 2017.
87. H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, R. M. Summers,

Deep convolutional neural networks for computer-aided detection: CNN architectures,
dataset characteristics and transfer learning, IEEE transactions on medical imaging 35 (5)
(2016), pp. 1285-1298, https://doi.org/10.1109/TMI.2016.2528162.

88. V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, arXiv preprint
arXiv:1603.07285 (2016).

89. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, arXiv preprint arXiv:1502.03167 (2015).

90. A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve neural network acoustic
models, in: 30th International Conference on Machine Learning, Vol. 30, No. 1, Atlanta,
Georgia, 2013, pp. 3,
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf.

91. V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in:
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010,
pp. 807-814, https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf.

92. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple
way to prevent neural networks from overfitting, The Journal of Machine Learning
Research 15 (1) (2014), pp. 1929-1958,
https://dl.acm.org/doi/abs/10.5555/2627435.2670313.

93. M. Mohtasham Khani, S. Vahidnia, L. Ghasemzadeh, Y. E. Ozturk, M. Yuvalaklioglu, S. Akin,
N. K. Ure, Deep-learning-based crack detection with applications for the structural health
monitoring of gas turbines, Structural Health Monitoring (2019), pp. 1475921719883202,
https://doi.org/10.1177/1475921719883202.

94. B. Kim, S. Cho, Automated vision-based detection of cracks on concrete surfaces using a deep
learning technique, Sensors 18 (10) (2018), pp. 3452, https://doi.org/10.3390/s18103452.

95. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional
neural networks, in: Advances in Neural Information Processing Systems, Lake Tahoe,

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://doi.org/10.1016/j.autcon.2018.11.028
https://www.researchgate.net/profile/Chengjun_Tan/publication/337885795_Deep_Learning-Based_Crack_Detection_Using_Mask_R-CNN_Technique/links/5df0771ba6fdcc2837177db4/Deep-Learning-Based-Crack-Detection-Using-Mask-R-CNN-Technique.pdf
https://www.researchgate.net/profile/Chengjun_Tan/publication/337885795_Deep_Learning-Based_Crack_Detection_Using_Mask_R-CNN_Technique/links/5df0771ba6fdcc2837177db4/Deep-Learning-Based-Crack-Detection-Using-Mask-R-CNN-Technique.pdf
https://www.researchgate.net/profile/Chengjun_Tan/publication/337885795_Deep_Learning-Based_Crack_Detection_Using_Mask_R-CNN_Technique/links/5df0771ba6fdcc2837177db4/Deep-Learning-Based-Crack-Detection-Using-Mask-R-CNN-Technique.pdf
https://www.researchgate.net/profile/Chengjun_Tan/publication/337885795_Deep_Learning-Based_Crack_Detection_Using_Mask_R-CNN_Technique/links/5df0771ba6fdcc2837177db4/Deep-Learning-Based-Crack-Detection-Using-Mask-R-CNN-Technique.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
https://doi.org/10.1109/TMI.2016.2528162
http://robotics.stanford.edu/%7Eamaas/papers/relu_hybrid_icml2013_final.pdf
https://www.cs.toronto.edu/%7Ehinton/absps/reluICML.pdf
https://dl.acm.org/doi/abs/10.5555/2627435.2670313
https://doi.org/10.1177/1475921719883202
https://doi.org/10.3390/s18103452

143

Nevada, 2012, pp. 1097-1105, http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

96. K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details:
Delving deep into convolutional nets, arXiv preprint arXiv:1405.3531 (2014).

97. A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, A
review on deep learning techniques applied to semantic segmentation, arXiv preprint
arXiv:1704.06857 (2017), https://arxiv.org/abs/1704.06857.

98. C. M. Bishop, Pattern recognition and machine learning, springer, 2006, 1493938436.
99. Y. Bengio, Practical recommendations for gradient-based training of deep architectures,

Neural Networks: Tricks of the Trade, Springer, 2012, pp. 437-478.
100. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural

networks, in: 13th International Conference on Artificial Intelligence and Statistics,
Sardinia, Italy, 2010, pp. 249-256,
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?source=post_page.

101. A. E. Orhan, X. Pitkow, Skip connections eliminate singularities, arXiv preprint
arXiv:1701.09175 (2017).

102. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional
networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4700-4708, https://doi.org/10.1109/CVPR.2017.243.

103. N. Japkowicz, S. Stephen, The class imbalance problem: A systematic study, Intelligent data
analysis 6 (5) (2002), pp. 429-449, https://doi.org/10.3233/IDA-2002-6504.

104. T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (8) (2006), pp.
861-874.

105. P. N. Tan, Introduction to data mining, Pearson Education India, 2018, ISBN: 813176463X.
106. G. Csurka, D. Larlus, F. Perronnin, F. Meylan, What is a good evaluation measure for

semantic segmentation?, in: BMVC, Vol. 27, Citeseer, 2013, pp. 2013,
http://dx.doi.org/10.5244/C.27.32.

107. G. Shrivakshan, C. Chandrasekar, A comparison of various edge detection techniques used
in image processing, IJCSI International Journal of Computer Science Issues 9 (5) (2012),
pp. 272-276, https://www.ijcsi.org/papers/IJCSI-9-5-1-269-276.pdf.

108. M. Sabin, Contouring—the state of the art, Fundamental algorithms for computer graphics,
Springer, 1985, pp. 411-482, https://link.springer.com/chapter/10.1007/978-3-642-84574-
1_20.

109. D. Watson, Contouring: a guide to the analysis and display of spatial data, Elsevier, 2013,
1483287351.

110. R. Shumway, Statistics and data analysis in geology, Taylor & Francis, 1987.
111. F. P. Agterberg, Trend surface analysis, Spatial statistics and models, Springer, 1984, pp.

147-171, https://link.springer.com/chapter/10.1007/978-94-017-3048-8_8.
112. H. Elbehiery, A. Hefnawy, M. Elewa, Surface Defects Detection for Ceramic Tiles Using

Image Processing and Morphological Techniques, in: WEC (5), 2005, pp. 158-162,
https://www.researchgate.net/publication/221017750_Surface_Defects_Detection_for_Ce
ramic_Tiles_Using_Image_Processing_and_Morphological_Techniques.

113. X. J. Xu, X. N. Zhang, Crack detection of reinforced concrete bridge using video image,
Journal of Central South University 20 (9) (2013), pp. 2605-2613,
https://doi.org/10.1007/s11771-013-1775-5.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1704.06857
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?source=post_page
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3233/IDA-2002-6504
http://dx.doi.org/10.5244/C.27.32
https://www.ijcsi.org/papers/IJCSI-9-5-1-269-276.pdf
https://link.springer.com/chapter/10.1007/978-3-642-84574-1_20
https://link.springer.com/chapter/10.1007/978-3-642-84574-1_20
https://link.springer.com/chapter/10.1007/978-94-017-3048-8_8
https://www.researchgate.net/publication/221017750_Surface_Defects_Detection_for_Ceramic_Tiles_Using_Image_Processing_and_Morphological_Techniques
https://www.researchgate.net/publication/221017750_Surface_Defects_Detection_for_Ceramic_Tiles_Using_Image_Processing_and_Morphological_Techniques
https://doi.org/10.1007/s11771-013-1775-5

144

114. M. Rabah, A. Elhattab, A. Fayad, Automatic concrete cracks detection and mapping of
terrestrial laser scan data, NRIAG Journal of Astronomy and Geophysics 2 (2) (2013), pp.
250-255, https://doi.org/10.1016/j.nrjag.2013.12.002.

115. K. Wang, L. Lin, Q. J. Li, V. Nguyen, G. Hayhoe, A. Larkin, Runway groove identification
and evaluation using 1 mm 3D image data, Airfield and Highway Pavement 2013:
Sustainable and Efficient Pavements, 2013, pp. 730-741,
https://doi.org/10.1061/9780784413005.059.

116. D. Sundararajan, Digital Image Processing: A Signal Processing and Algorithmic Approach,
Springer, 2017, 9811061130.

117. E. R. Davies, Computer and machine vision: theory, algorithms, practicalities, Academic
Press, 2012, 0123869919.

118. M. A. Farooque, J. S. Rohankar, Survey on various noises and techniques for denoising the
color image, International Journal of Application or Innovation in Engineering &
Management (IJAIEM) 2 (11) (2013), pp. 217-221,
https://www.ijaiem.org/volume2issue11/IJAIEM-2013-11-24-070.pdf.

119. A. Mohan, S. Poobal, Crack detection using image processing: A critical review and analysis,
Alexandria Engineering Journal (2017), https://doi.org/10.1016/j.aej.2017.01.020.

120. L. G. Mosher, Results from studies of highway grooving and texturing by serveral state
highway departments, Pavement grooving and traction studies 5073 (1969), pp. 465,
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690011116.pdf.

121. E. E. Farnsworth, Pavement grooving on highways, Pavement Grooving and Traction Studies
5073 (1969), pp. 411,
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690011114.pdf.

122. G. P. Ong, T. Fwa, Transverse pavement grooving against hydroplaning. I: Simulation model,
Journal of transportation engineering 132 (6) (2006), pp. 441-448,
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:6(441).

123. M. Nieniewski, L. Chmielewski, A. Jozwik, M. Sklodowski, Morphological detection and
feature-based classification of cracked cegions in ferrites, Machine Graphics and Vision 8
(4) (1999), pp. 699-712,
https://pdfs.semanticscholar.org/8cd2/a6efce0221c095e434a710485997b81723f2.pdf.

124. X. Yu, X. Chen, W. Chen, Image smoothing algorithm for grooved cement concrete pavement
based on unidirectional total variation and Curvelet transform, in: Computer and
Communications (ICCC), 2016 2nd IEEE International Conference on, IEEE, 2016, pp.
713-717, https://doi.org/10.1109/CompComm.2016.7924795.

125. M. P. Cipolletti, C. A. Delrieux, G. M. Perillo, M. C. Piccolo, Superresolution border
segmentation and measurement in remote sensing images, Computers & geosciences 40
(2012) (2012), pp. 87-96, https://doi.org/10.1016/j.cageo.2011.07.015.

126. C. Maple, Geometric design and space planning using the marching squares and marching
cube algorithms, Geometric Modeling and Graphics, 2003. Proceedings. 2003
International Conference on, IEEE, 2003, pp. 90-95,
https://doi.org/10.1109/GMAG.2003.1219671.

127. W. K. Pratt, Digital image processing, John Wiley & Sons, Inc., 2001.
128. S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska, B. De Schutter, Deep convolutional

neural networks for detection of rail surface defects, in: 2016 IEEE International Joint

https://doi.org/10.1016/j.nrjag.2013.12.002
https://doi.org/10.1061/9780784413005.059
https://www.ijaiem.org/volume2issue11/IJAIEM-2013-11-24-070.pdf
https://doi.org/10.1016/j.aej.2017.01.020
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690011116.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690011114.pdf
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:6(441
https://pdfs.semanticscholar.org/8cd2/a6efce0221c095e434a710485997b81723f2.pdf
https://doi.org/10.1109/CompComm.2016.7924795
https://doi.org/10.1016/j.cageo.2011.07.015
https://doi.org/10.1109/GMAG.2003.1219671

145

Conference on Neural Networks, Vancouver, British Columbia, Canada, 2016, pp. 2584-
2589, https://doi.org/10.1109/IJCNN.2016.7727522.

129. L. Pauly, D. Hogg, R. Fuentes, H. Peel, Deeper networks for pavement crack detection, in:
34th International Symposium on Automation and Robotics in Construction, Taipei,
Taiwan, 2017, pp. 479-485, http://eprints.whiterose.ac.uk/120380/1/ISARC2017-
Paper066.pdf.

130. W. Song, S. Zhou, Laser-scanned roadway range image dataset (LRRD), (2020), Accessed,
https://doi.org/10.17603/ds2-bzv3-nc78.

131. P. Wang, H. Huang, Comparison analysis on present image-based crack detection methods
in concrete structures, in: 2010 3rd International Congress on Image and Signal Processing
(CISP), Vol. 5, IEEE, 2010, pp. 2530-2533, https://doi.org/10.1109/CISP.2010.5647496.

132. R. T. Wu, M. R. Jahanshahi, Data fusion approaches for structural health monitoring and
system identification: past, present, and future, Structural Health Monitoring (2018), pp.
1475921718798769, https://doi.org/10.1177/1475921718798769.

133. Y. Feng, Z. Zhang, X. Zhao, R. Ji, Y. Gao, Gvcnn: Group-view convolutional neural networks
for 3d shape recognition, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 264-272.

134. F. C. Chen, M. R. Jahanshahi, R. T. Wu, C. Joffe, A texture‐based video processing
methodology using Bayesian data fusion for autonomous crack detection on metallic
surfaces, Computer‐Aided Civil and Infrastructure Engineering 32 (4) (2017), pp. 271-
287, https://doi.org/10.1111/mice.12256.

135. F. C. Chen, M. R. Jahanshahi, NB-CNN: Deep learning-based crack detection using
convolutional neural network and Naïve Bayes data fusion, IEEE Transactions on
Industrial Electronics 65 (5) (2018), pp. 4392-4400,
https://doi.org/10.1109/TIE.2017.2764844.

136. R. Heideklang, P. Shokouhi, Multi-sensor image fusion at signal level for improved near-
surface crack detection, NDT & E International 71 (2015), pp. 16-22,
https://doi.org/10.1016/j.ndteint.2014.12.008.

137. G. H. Beckman, D. Polyzois, Y. J. Cha, Deep learning-based automatic volumetric damage
quantification using depth camera, Automation in Construction 99 (2019), pp. 114-124,
https://doi.org/10.1016/j.autcon.2018.12.006.

138. D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Processing Magazine 19 (1)
(2002), pp. 17-28, https://doi.org/10.1109/79.974718.

139. S. Sorncharean, S. Phiphobmongkol, Crack detection on asphalt surface image using
enhanced grid cell analysis, in: Electronic Design, Test and Applications, 2008. DELTA
2008. 4th IEEE International Symposium on, IEEE, 2008, pp. 49-54,
https://doi.org/10.1109/DELTA.2008.101.

140. J. Huang, W. Liu, X. Sun, A Pavement Crack Detection Method Combining 2D with 3D
Information Based on Dempster ‐ Shafer Theory, Computer ‐ Aided Civil and
Infrastructure Engineering 29 (4) (2014), pp. 299-313, https://doi.org/10.1111/mice.12041.

141. D. Zhang, Q. Li, Y. Chen, M. Cao, L. He, B. Zhang, An efficient and reliable coarse-to-fine
approach for asphalt pavement crack detection, Image and Vision Computing 57 (2017),
pp. 130-146, https://doi.org/10.1016/j.imavis.2016.11.018.

https://doi.org/10.1109/IJCNN.2016.7727522
http://eprints.whiterose.ac.uk/120380/1/ISARC2017-Paper066.pdf
http://eprints.whiterose.ac.uk/120380/1/ISARC2017-Paper066.pdf
https://doi.org/10.17603/ds2-bzv3-nc78
https://doi.org/10.1109/CISP.2010.5647496
https://doi.org/10.1177/1475921718798769
https://doi.org/10.1111/mice.12256
https://doi.org/10.1109/TIE.2017.2764844
https://doi.org/10.1016/j.ndteint.2014.12.008
https://doi.org/10.1016/j.autcon.2018.12.006
https://doi.org/10.1109/79.974718
https://doi.org/10.1109/DELTA.2008.101
https://doi.org/10.1111/mice.12041
https://doi.org/10.1016/j.imavis.2016.11.018

146

142. M. A. Shahin, H. R. Maier, M. B. Jaksa, Data division for developing neural networks applied
to geotechnical engineering, Journal of Computing in Civil Engineering 18 (2) (2004), pp.
105-114, https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105).

143. MATHWORKS, MATLAB deep learning toolbox, (2019), Accessed,
https://www.mathworks.com/products/deep-learning.html.

144. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: 30th IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, Hawaii, 2016, pp. 2818-2826, https://www.cv-
foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inceptio
n_CVPR_2016_paper.pdf.

145. M. Thoma, Analysis and optimization of convolutional neural network architectures, arXiv
preprint arXiv:1707.09725 (2017).

146. Y. z. Lin, Z. h. Nie, H. w. Ma, Structural damage detection with automatic feature‐extraction
through deep learning, Computer‐Aided Civil and Infrastructure Engineering 32 (12)
(2017), pp. 1025-1046, https://doi.org/10.1111/mice.12313.

147. C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation functions: Comparison of
trends in practice and research for deep learning, arXiv preprint arXiv:1811.03378 (2018).

148. N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, On large-batch
training for deep learning: Generalization gap and sharp minima, arXiv preprint
arXiv:1609.04836 (2016).

149. C. Xing, D. Arpit, C. Tsirigotis, Y. Bengio, A walk with sgd, arXiv preprint
arXiv:1802.08770 (2018).

150. S. Jastrzębski, D. Arpit, N. Ballas, V. Verma, T. Che, Y. Bengio, Residual connections
encourage iterative inference, arXiv preprint arXiv:1710.04773 (2017).

151. L. N. Smith, A disciplined approach to neural network hyper-parameters: Part 1--learning
rate, batch size, momentum, and weight decay, arXiv preprint arXiv:1803.09820 (2018).

152. Z. Liu, Y. Cao, Y. Wang, W. Wang, Computer vision-based concrete crack detection using
U-net fully convolutional networks, Automation in Construction 104 (2019), pp. 129-139,
https://doi.org/10.1016/j.autcon.2019.04.005.

https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105
https://www.mathworks.com/products/deep-learning.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://doi.org/10.1111/mice.12313
https://doi.org/10.1016/j.autcon.2019.04.005

147

APPENDIX A: LIST OF PUBLICATIONS

This section lists the journal papers that have been published, which are based on the research
outcomes from this technical report.

S. Zhou, W. Song, Crack segmentation through deep convolutional neural networks and
heterogeneous image fusion, Automation in Construction, 125 (2020): p. 103605,
https://doi.org/10.1016/j.autcon.2021.103605. (This manuscript is corresponding to sections 3.4,
4.5, and 5.5 of this technical report).

S. Zhou, W. Song, Concrete roadway crack segmentation using encoder-decoder networks with
range images, Automation in Construction, 120 (2020): p. 103403,
https://doi.org/10.1016/j.autcon.2020.103403. (This manuscript is corresponding to sections 3.3,
4.3, and 5.3 of this technical report).

S. Zhou, W. Song, Deep learning-based roadway crack classification with heterogeneous image
data fusion, Structural Health Monitoring, (2020): p. 1475921720948434,
https://doi.org/10.1177/1475921720948434. (This manuscript is corresponding to sections 3.4, 4.4,
and 5.4 of this technical report).

S. Zhou, W. Song, Deep learning-based roadway crack classification using laser-scanned range
images: A comparative study on hyperparameter selection, Automation in Construction, 114
(2020): p. 103171, https://doi.org/10.1016/j.autcon.2020.103171. (This manuscript is
corresponding to sections 3.2, 4.2, and 5.2 of this technical report).

S. Zhou, W. Song, Robust image-based surface crack detection using range data, Journal of
Computing in Civil Engineering, 34 (2) (2020): p. 04019054,
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000873. (This manuscript is corresponding to
sections 3.1, 4.1, and 5.1 of this technical report).

https://doi.org/10.1016/j.autcon.2021.103605
https://doi.org/10.1016/j.autcon.2020.103403
https://doi.org/10.1177/1475921720948434
https://doi.org/10.1016/j.autcon.2020.103171
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000873

	Chapter 1: Introduction
	1.1 Motivation
	1.1.1 Literature review on image-based crack detection

	1.2 Challenges
	1.3 Research Objective
	1.4 Layout of the Technical Report

	Chapter 2: Background
	2.1 Non-Learning-Based Methodologies
	2.2 Learning-Based Methodologies
	2.2.1 Machine Learning
	2.2.2 Deep Learning through DCNN
	 Crack classification
	 Crack object recognition
	 Crack segmentation

	2.3 Technical Background for DCNN-Based Methodology
	2.3.1 DCNN Layers
	 Convolutional layer
	 Transposed convolutional layer
	 Max pooling layer
	 Batch normalization layer
	 Nonlinear activation layer
	 Dropout layer
	 Fully connected layer
	 Softmax layer

	2.3.2 Sliding Window Technique
	2.3.3 Data Augmentation
	2.3.4 Training
	 Cost function
	 Optimization algorithm
	 Parameter initialization

	2.3.5 Residual Connection

	2.4 Laser Image and Measurement System
	2.4.1 Measuring Principle

	2.5 Performance Evaluation
	2.5.1 Precision-Recall Analysis
	2.5.2 Intersection over Union
	2.5.3 Boundary F1 Score

	Chapter 3: Proposed Techniques
	3.1 Image Processing Technique for Robust Crack Detection Using Range Image Data
	3.1.1 Motivation
	3.1.2 Proposed Methodology
	 Flow chart of the proposed crack detection methodology

	3.1.3 3D Laser Range Image Data
	3.1.4 Frequency Domain Filtering
	 Relationship between crack width and cutoff frequency
	 Choice of filters
	 High-pass filtering to eliminate surface variations
	 Low-pass filtering to suppress image noises
	 Multiple notch filtering to remove grooves

	3.1.5 Crack Detection Based on Contouring Analysis
	 Marching squares algorithm for contour detection
	 Contour qualification and crack classification

	3.2 Deep Learning-Based Crack Classification
	3.2.1 Motivation
	3.2.2 Proposed Methodology
	 Proposed DCNN architecture
	 Hyperparameter selection
	 Flow chart of the proposed DCNN-based crack classification methodology

	3.3 Deep Learning-Based Crack Segmentation
	3.3.1 Motivation
	3.3.2 Proposed Methodology
	 Encoder-decoder networks with residual connections
	 Encoder-decoder networks without residual connections
	 Flow chart of the proposed DCNN-based crack segmentation methodology

	3.4 Deep Learning-Based Data Fusion for Crack Detection
	3.4.1 Motivation
	3.4.2 Heterogeneous Image Data
	 Raw intensity image
	 Raw range image
	 Filtered range image
	 Data fusion to combine raw intensity and range image

	3.4.3 Proposed Methodology for Crack Classification
	 Net-A: a DCNN architecture for single-channel image input
	 Net-B and Net-C: DCNN architectures for dual-channel image input
	 Flow chart of the proposed DCNN-based crack classification methodology with heterogeneous image fusion

	3.4.4 Proposed Methodology for Crack Segmentation
	 Net-1: An encoder-decoder network for a single type of image data
	 Net-2 and Net-3: Encoder-decoder networks for fused raw image data

	Chapter 4: Experimental Study and Results
	4.1 Image Processing Technique for Robust Crack Detection Using Range Image Data
	4.1.1 Image Pre-Processing using Frequency Domain Filtering
	 High-pass filtering result
	 Low-pass filtering result
	 Multiple notch filtering result

	4.1.2 Crack Detection Results Based on Contouring Analysis
	4.1.3 Validation
	4.1.4 Limitations

	4.2 Deep Learning-Based Crack Classification
	4.2.1 Data Generation
	 Image acquisition and processing
	 Ground truth generation
	 Data augmentation
	 Dataset configuration

	4.2.2 Experimental Setup
	 Computing hardware and software
	 Parameter initialization

	4.2.3 Results and Discussions
	 Case I: impacts from different kernel sizes, network depths and widths
	 Case II: impacts from different mini-batch sizes, learning rates, dropout factors, and LReLU factors
	 Case III: proposed vs. benchmark architectures
	 Case IV: a crack classification example using the optimal architecture

	4.2.4 Limitations

	4.3 Deep Learning-Based Crack Segmentation
	4.3.1 Data Generation
	 Image acquisition and processing
	 Ground truth generation
	 Data augmentation
	 Dataset configuration

	4.3.2 Experimental Setup
	 Computing hardware and software
	 Hyperparameter configuration
	 Parameter initialization

	4.3.3 Results and Discussions
	 Case I: comparison on the segmentation performance
	 Case II: performance demonstration on concrete roadway images

	4.3.4 Limitations

	4.4 Deep Learning-Based Data Fusion for Crack Classification
	4.4.1 Data Generation
	 Image acquisition and processing
	 Ground truth generation
	 Data augmentation
	 Dataset configuration

	4.4.2 Experimental Setup
	 Computing hardware and software
	 Hyperparameter configuration
	 Parameter initialization

	4.4.3 Results and Discussions
	 Case I: comparison on network performance by heterogeneous image data
	 Case II: comparison on network performance by different architectures with data fusion

	4.4.4 Limitations

	4.5 Deep Learning-Based Data Fusion for Crack Segmentation
	4.5.1 Data Generation
	 Image acquisition and processing
	 Ground truth generation
	 Data augmentation
	 Dataset configuration

	4.5.2 Experimental Setup
	 Computing hardware and software
	 Hyperparameter configuration
	 Parameter initialization

	4.5.3 Results and Discussions
	 Case I: Impacts from heterogeneous image data
	 Case II: Demonstration of DCNN performance on a concrete roadway surface

	4.5.4 Limitations

	Chapter 5: Discussion and Future Work
	5.1 Image Processing Technique for Robust Crack Detection Using Range Image Data
	5.2 Deep Learning-Based Crack Classification
	5.3 Deep Learning-Based Crack Segmentation
	5.4 Deep Learning-Based Data Fusion for Crack Classification
	5.5 Deep Learning-Based Data Fusion for Crack Segmentation
	5.6 Concluding Remarks

	References
	Appendix A: List of Publications

