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Executive Summary 

Modern society requires a sustainable, robust, and serviceable infrastructure system to promote 
social welfare and boost economy. To support such an infrastructure system, an efficient health 
monitoring framework is needed which can promptly detect the presence of defects and perform 
associated rehabilitation and maintenance.  

In civil infrastructure, one of the most common types of defects is cracking, which evolves rapidly 
under the impacts of heavy traffic, aging of materials, and drastic environmental changes. In recent 
decades, image-based automated crack detection methodologies have been developed and 
extensively applied by professionals and researchers. Nevertheless, a few issues and challenges 
existing in this type of methodology are yet to be systematically investigated and properly 
addressed. 

In this technical report, an image-based condition assessment framework for roadway crack 
detection is developed. It consists of four topics: i) proposing a filter-based methodology that can 
address image disturbances to promote a robust image-based roadway crack detection; ii) 
performing a systematic study to investigate the impact from hyperparameter selection on the 
performance of deep convolutional neural network (DCNN) on roadway crack classification; iii) 
achieving pixel-level crack detection resolution on image data of real-world complexities through 
DCNN-based roadway crack segmentation; and iv) investigating the impact from heterogeneous 
image data on DCNN-based roadway crack detection and proposing heterogeneous image fusion 
strategies to address data uncertainties.  

Overall, experimental results and discussions show that the proposed crack detection framework 
is capable to properly address the issues under investigation and leads to improved and more robust 
crack detection performance than current image-based methodologies. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Recent years have witnessed a steady trend of growth in the transportation infrastructure 
investment. For example, according to the U.S. Census Bureau [1], the total construction spending 
on highway and street during March 2020 was estimated at a seasonally adjusted annual rate 
(SAAR) of 108.6 billion dollars, 4.5% higher than in February 2020 and 5.3% higher than in March 
2019. Over a wider time span, the SAAR of the construction spending on highway and street has 
steadily increased from 78.2 billion dollars in March 2010 [2] to 108.6 billion dollars in March 
2020 [1], at an annualized growth rate of 3.3%. Alongside the vigorous development of the 
transportation infrastructure, there has been a rising demand for a more efficient investment on 
transportation infrastructure by facilitating performance-based decision-making and appropriately 
managing infrastructure assets for better stewardship of the transportation system. 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) [3] sets the course for 
transportation investment in highways to address many challenges facing the U.S. transportation 
system such as improving safety and maintaining infrastructure condition. One of the core 
concepts and requirements under MAP-21 is to establish performance-based planning and 
programming to promote an efficient transportation system and improve transportation decision-
making. For the Federal Highway Administration (FHWA), State Department of Transportation 
(DOT), and local governments, long-term efforts need to be devoted to implementing performance 
management activities and methodologies, such that the requirements by MAP-21 are fulfilled.  

Right-of-way (ROW) imagery has become one of the data sources submitted to both the 
Transportation Asset Management Plans (TAMP) [4] mandated by MAP-21 and the Highway 
Performance Monitoring System (HPMS) [5]. By using image data taken from a ROW imaging 
system (e.g., a survey vehicle), image-based methodologies with advanced computer vision 
techniques for roadway defects detection can offer an efficient performance-based framework to 
facilitate the condition assessment and decision-making process for transportation infrastructure. 
Thus, it has been a rising interest for professionals and researchers to develop more efficient and 
accurate image-based methodologies on roadway defects detection for the purpose of promoting 
social welfare and stimulating economy through improving the transportation system. 

1.1.1 Literature review on image-based crack detection 

Cracking distress is one of the most common types of defects in civil infrastructure [6], which is 
caused by various factors such as vehicle loading, aging of materials, and long-term environmental 
effects, etc.[7] For example, the freeze-thaw effect [8,9] can cause concrete cracking due to 
moisture freezing and expansion; the alkali-silica reaction (ASR) can lead to aggregates expansion 
and cracking [10]. As such cracks gradually evolve, propagate, and coalesce into major structural 
cracks, the integrity and serviceability of the infrastructure (e.g., bridges [11,12],  roadways 
[13,14], pipelines [15], and tunnels [16]) is largely deteriorated, which is one of the pressing 
concerns facing today’s civil engineering community. Taking bridge structures as an example, 
cracks can not only impair the bridge aesthetics but also cause structural damage by allowing 
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corrosive chemical agents (e.g., water and de-icing salts) to penetrate through the bridge decks, 
causing deteriorated serviceability and even structural failures. Thus, the development of accurate 
and efficient crack detection methodologies using imagery data is of great importance, as it 
facilitates a prompt transportation decision-making and rehabilitation by detecting and providing 
cracking information for health monitoring and condition assessment of the infrastructure. 

In recent decades, image-based crack detection methodologies have been extensively developed 
and applied [6]. Compared against some traditional manual approaches such as visual inspection 
[17], which are usually subjective and labor-intensive [18], image-based methodologies offer an 
automated yet more consistent and objective alternative that can reduce labor cost and improve 
crack detection efficiency. 

From the perspective of feature representation and classification, current image-based crack 
detection methods can be categorized into non-learning-based and learning-based methods. Most 
of early image-based methods belong to the non-learning-based category. This type of 
methodology usually employs handcrafted image processing techniques such as filtering, 
thresholding, and morphological operation, for crack enhancement and cracking feature extraction. 
Although certain levels of success were reported in their applications, the non-learning-based 
methods still suffer from some issues. For example, the handcrafted image processing procedures 
or techniques used in non-learning-based methodologies are usually involved with prior user input 
or subjective parameter selection. Thus, their applicability under real-world scenarios is usually 
limited, due to the subjectivity from human intervention and the lack of ability to self-adapt to 
variations of the ambient environment. 

Learning-based methods can potentially alleviate the above subjectivities by directly learning from 
data, making predictions via self-learned pattern recognition and extraction. In the recent decade, 
deep convolutional neural network (DCNN), as a type of deep learning-based method, has rapidly 
evolved into the most advanced and popular crack detection methodology due to its high versatility 
and wide applicability. Nevertheless, for current DCNN-based crack detection methodologies, 
several issues and challenges related with the DCNN layout and image data also exist.  

1.2 Challenges 

The major challenges for today’s image-based crack detection methodologies are briefly 
summarized as follows, a majority of which remain to be systematically investigated and properly 
addressed to promote the robustness of image-based methodologies against real-world data: 

i) Challenge 1 (disturbances in intensity images): For crack detection methodologies using 
intensity image data, the general assumption is that cracks are darker (i.e., lower intensity value) 
than non-crack regions [19]. However, during image data collection, influences from ambient 
environment such as shadows, varying lighting condition [19-23] often exist in the acquired 
intensity data, which can result in non-uniform background illumination and low intensity contrast, 
thus deteriorating the crack detection performance. Besides, image disturbances such as stains, oil 
spills, and tire marks [19,24-26] which possess crack-like features and characteristics can add 
difficulties to intensity-based crack detection methodologies. Figure 1-1 illustrates some typical 
types of disturbances existing in intensity image data; 
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Figure 1-1. Disturbances in intensity images: (a) shadows [27]; (b) uneven illumination [28]; (c) tire mark; (d) 

oil spill; and (e) stains. 

ii) Challenge 2 (disturbances in range images): Crack detection methodologies using range 
(i.e., elevation) image data usually rely on the elevation difference between cracks and non-crack 
regions to interpret the presence of cracks [19]. Despite its advantages over intensity image data 
such as being insensitive to varying lighting condition, range image data also suffers from 
disturbances such as surface variations, grooved patterns, shoulder drop-offs, pavement joints, and 
pavement edges [29-31]. These image disturbances are undesirable, because they usually lead to 
false positive detections due to similar elevation changes as cracks. Moreover, the performance of 
range-based methodologies may deteriorate on cracks with shallow depths [29,31]. Examples on 
the disturbances in range images are illustrated in Figure 1-2; 

 
Figure 1-2. Disturbances in range images: (a) rutting and uneven lanes; (b) ripples due to vehicle vibration; 

and (c) grooved patterns [29]. 
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iii) Challenge 3 (subjectivities due to parameter selection in image pre-processing techniques): 
The image disturbances existing in intensity or range image data, as introduced above, need to be 
properly addressed prior to crack detection for crack enhancement and noise suppression purpose. 
For non-learning-based methodologies, it is common practice to apply image pre-processing 
techniques such as filtering [13,26,32,33], morphological operation [34,35], and surface fitting [36] 
to eliminate these image disturbances from the image data. However, such image pre-processing 
techniques are usually involved with a parameter selection process, which is often expertise-
intensive, user-dependent, and case-dependent. The subjectivities and uncertainties associated 
with the image pre-processing techniques usually exist, leading to performance deterioration of 
the crack detection methodologies against image data of real-world complexities; 

iv) Challenge 4 (detection of crack objects with enclosed boundaries): The majority of the 
non-learning-based crack detection methodologies such as edge-based crack detection usually do 
not consider crack connectivity [37], thus have difficulties estimating the cracking properties such 
as area and width which may serve as important indicators for health condition assessment and 
decision-making; 

v) Challenge 5 (hyperparameter configuration for DCNN-based crack detection): For crack 
detection applications based on DCNN, a critical factor on the network performance is to 
determine the optimal joint configuration of the hyperparameters such as network width, depth, 
and learning rate [31]. Some hyperparameters such as network depth, width, and number of filters 
determine the DCNN layout and, accordingly, the model capacity and complexity. Furthermore, 
other hyperparameters such as learning rate and momentum factor governs the efficiency of the 
DCNN on learning from the input data [38]. Determination of these hyperparameter values is 
usually an experimental process, and no exact guidelines to the design process of an ideal DCNN 
architecture and its associated training scheme for crack detection tasks are available [38,39]; 

vi) Challenge 6 (pixel-level crack classification on real-world image data through DCNN): In 
recent years, DCNN-based methodologies have gradually evolved from patch-level crack 
classification to crack object detection and then to pixel-level classification (i.e., segmentation). 
Semantic segmentation through DCNN can realize pixel-level resolution on crack detection. 
Nevertheless, a few issues remain to be properly addressed for this type of methodology. For 
example, due to the uncertainty in real-world image data, DCNN-based crack segmentation studies 
such as [30,40-42] often employ image pre-processing techniques to address image-related issues, 
despite the high adaptability of DCNNs. However, it is preferable to exploit raw image data rather 
than pre-processed data to minimize human intervention. Moreover, current methodologies [30] 
have difficulties achieving robust crack segmentation performance on raw image data 
contaminated by disturbances such as grooved patterns in range images;  

vii) Challenge 7 (DCNN-based crack detection on real-world image data through data fusion): 
For DCNN-based crack detection applications, either intensity or range image data is used for 
analysis. As explained above, the image-related issues existing each type of image data need to be 
properly addressed through image pre-processing techniques even for DCNN-based 
methodologies [30,40-42]. The uncertainties and subjectivities associated with the image pre-
processing, however, cannot be completely avoided. From the perspective of image data, it may 
be feasible to exploit data fusion strategies [43-45] to combine the information in different types 
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of image data to address data uncertainties and obtain integrated and comprehensive information, 
as a better alternative to applying image pre-processing techniques. Nevertheless, in current 
literature on DCNN-based crack detection, studies and discussions on developing effective data 
fusion strategies are lacking; besides, the influences from different types of image data on DCNN-
based crack segmentation performance are yet to be systematically investigated. 

1.3 Research Objective 

The overarching goal of this technical report is to develop novel image-based condition assessment 
methodologies for civil infrastructures by leveraging advanced sensing and imaging technologies. 
To achieve this goal, several research objectives aiming at addressing the challenges summarized 
in section 1.2 by proposing novel image-based crack detection methodologies are stated as below: 

i) To develop a robust crack detection methodology by proposing a novel image pre-
processing technique with minimal prior user input and subjectivity to effectively eliminate the 
image disturbances in laser-scanned range image data. By leveraging this methodology, 
Challenges 2 and 3 which are related with the issues in the image data and associated image pre-
processing can be properly addressed. Furthermore, the issue as described by Challenge 4 is also 
solved through this methodology by using a contour-based crack detection algorithm; 

ii) To propose a DCNN-based crack classification methodology and perform a systematic 
study on the optimal joint hyperparameter configuration on the DCNN architecture and the 
associated training scheme, providing prior knowledge and insights to future research and 
applications. Thus, Challenge 5 regarding the hyperparameter selection is tackled; 

iii) To propose a DCNN-based crack segmentation methodology which can achieve pixel-level 
resolution on crack detection and is robust against image disturbances in raw image data under 
real-world scenarios. This methodology aims to address the issue as described by Challenge 6; 

iv) To address Challenges 1, 2, 3, and 7 which are related with the image data, a DCNN-based 
crack detection methodology is developed to investigate the effect of different types of image data 
(i.e., heterogeneous image data) on DCNN performance and introduce robustness to DCNN-based 
applications through heterogeneous image fusion. 

Table 1-1 summarizes the proposed methodologies in this technical report and the corresponding 
challenges addressed by them. 

Table 1-1. The proposed methodologies and the corresponding challenges addressed. 

Methodologies proposed in this technical report Section 
number 

Addressed 
challenges 

A robust image processing technique for crack detection using range images 3.1 2, 3, 4 
   DCNN-based crack classification using range images: A comparative study 
on hyperparameter selection 

3.2 5 

   DCNN-based crack segmentation using range images 3.3 6 
   DCNN-based crack classification and segmentation with heterogeneous 
image fusion 

3.4 1, 2, 3, 7 
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1.4 Layout of the Technical Report 

The rest of this technical report is organized in the following manner. Chapter 2 first provides a 
thorough literature review on image-based crack detection methodologies, and then introduces the 
technical background related with the proposed DCNN-based methodologies. Chapter 3 describes 
the proposed image-based crack detection methodologies in detail. Then, in Chapter 4, 
experimental studies using the proposed methodologies for crack detection on image data of real-
world complexities are performed, and the associated results and discussions are presented. 
Chapter 5 summarizes the findings and conclusions for each proposed methodology, and then 
provides an overall assessment and conclusion regarding this technical report. 
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CHAPTER 2: BACKGROUND 

Section 2.1 and 2.2 provide a thorough literature review on image-based crack detection 
methodologies, putting emphasis on introducing recent advancements in DCNN-based crack 
detection. Then, information on the technical background related with DCNN is briefly described 
in section 2.3. Section 2.4 introduces the image acquisition system used in this study. And, the last 
section 2.5 describes the quantitative metrics for performance evaluation.  

2.1 Non-Learning-Based Methodologies 

Non-learning-based methodologies usually require handcrafted image processing procedures or 
techniques such as edge detection for feature extraction. Some of the non-learning-based 
methodologies used intensity image data, relying on the change of pixel intensities in cracked 
regions to interpret the presence of cracks. Abdel-Qader et al. [46] compared the effectiveness of 
four edge detection techniques (Canny edge detection, Sobel edge detection, Fourier transform, 
and fast Haar transform) on crack detection. They concluded that the fast Haar transform had the 
most accurate detection performance. Salman et al. [32] adopted Gabor filter to detect cracks based 
on the orientation feature of cracks. Hashimoto [47], Yamaguchi and Hashimoto [37], and Zhu et 
al. [48] utilized the concept of percolation, a physical model to describe liquid permeation, for 
crack detection. This approach initializes a crack seed region and labels the neighboring regions 
as cracks based on the percolation model. Tsai et al. [49] applied an algorithm [50] to detect 
pavement cracks through probabilistic modeling in crack presence and dynamic programming 
(DP), and concluded it outperformed other methods in accuracy and robustness. Huang and Xu 
[51] introduced a real time pavement crack detection algorithm which divides an image into grid 
cells and identifies crack cells by matching their neighbors with predefined templates/patterns.  

In general, because of the intensity-based data acquisition method, the performance of many crack 
detection algorithms is severely hampered in the presence of shadows, varying lighting conditions, 
and poor intensity contrast between cracks and surrounding surface [19-23]. Moreover, image 
noises such as blemishes (e.g., tire marks, oil spills, stains, etc.) [19,24-26] also deteriorate the 
crack detection performance. To address these issues in intensity images, several pre-processing 
techniques such as median filtering [52,53] and grayscale multiplication [54] have been adopted 
to improve the performance of the intensity-based approaches under varying illumination 
condition. Furthermore, technologies including stereovision and laser imaging were explored by 
many researchers to obtain three-dimensional (3D) data for crack detection. Wang et al. [25,55-
57] performed pioneering study in 3D pavement image processing. They developed and applied 
an automated pavement distress survey system. In this survey system, intensity image data was 
collected by a Digital Highway Data Vehicle (DHDV) to reconstruct 3D surfaces through 
stereovision. Torok, et al. [58]  and Jahanshahi and Masri [59] adopted 3D reconstruction based 
on Structure-from-Motion (SfM) [60] to gain depth perception from intensity images by using 
multiple cameras. Despite the use of stereovision-based techniques, several inherent issues in the 
intensity images, especially the varying illumination condition, cannot be completely avoided.  

More recently, laser-based 3D data collection system has been adopted, because the laser-scanned 
data is insensitive to varying lighting condition, and the aforementioned image noises do not 
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interfere with the crack detection by using the collected range (i.e., elevation) image data [19]. 
Tsai et al. [61,62] developed a road survey system using a Georgia Tech Survey Vehicle (GTSV) 
mounted with a Laser Crack Measurement System (LCMS [63]), which can collect high-resolution 
3D continuous pavement profiles. In a crack detection system proposed by Zhang, et al. [64], 3D 
pavement surface data was collected by using DHDV with PaveVision3D system. After obtaining 
the range data, methods such as morphological operation [18], wavelet transform [36], and DP-
based method [61,65] were adopted for crack detection.  

Methods using range images rely on the difference in elevations between the crack and 
surrounding regions for crack detection. This type of image data, however, also has issues such as 
surface variations, scanning noises, and non-crack patterns (e.g., grooves) [7,36]. Similar to 
intensity-based methods, range-based methods usually employ image pre-processing techniques 
to tackle these issues prior to crack detection. Ouyang and Xu [36] applied a surface fitting 
technique to remove the large-scale surface variations (e.g., uneven surface, transverse ripples due 
to vehicle vibration) in the range images. Jiang and Tsai [65] implemented an outlier removal and 
profile rectification technique by using a Gaussian filter to flatten the scanned range surface.  

Overall, a few challenges and issues as summarized in Challenge 1, 2, 3, and 4 in section 1.2 still 
exist in the non-learning-based methodology. Especially, the uncertainty and subjectivity due to 
parameter selection in the image pre-processing and defects detection procedures, as stated in 
[29,42], is a major challenge for the non-learning-based methods to achieve consistent 
performance under real-world complexities. 

2.2 Learning-Based Methodologies 

Recent advancement in computing technologies has paved a way for machine learning-based crack 
detection methods. This type of methods has drawn researchers’ interests by learning from data 
and making self-adaptations with minimum human intervention.  

2.2.1 Machine Learning 

Some pioneering applications using machine learning for crack pattern recognition were reported 
in literature. Lee and Lee [66] proposed a crack detection and classification method by integrating 
an image-based neural network (NN), a histogram-based NN, and a proximity-based NN. Each of 
them has a 3-layer architecture to detect and classify different crack patterns. Saar and Talvik [67] 
applied NN to detect cracks and further classify them into separate types including alligator crack, 
longitudinal crack, and transverse crack. In another machine learning-based application, support 
vector machine (SVM) was utilized by Moussa and Hussain [68] to classify pavement cracks into 
alligator crack, block crack, longitudinal crack, and transverse crack. Jahanshahi, et al. [18] 
evaluated the crack classification performance of three different classifiers: NN, SVM, and nearest 
neighbor classifier. They demonstrated that the first two classifiers had similar performance and 
both outperformed the last one. However, the machine learning methods used by these early 
studies only represent one or two layers of feature abstraction and cannot fully reflect the 
complexity of typical roadway surfaces [42]. 

2.2.2 Deep Learning through DCNN 
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As a deep learning-based method, deep convolutional neural network (DCNN) has gained 
popularity from researchers due to its wide adaptability and versatility. DCNN is advantageous 
over other image-based methods on that i) it can directly learn from the input data, thus resulting 
in minimum human intervention and prior assumption; and ii) it can reflect the data complexity 
through a hierarchical feature abstraction which is enabled by its multi-level network layout. 
DCNN architectures are loosely inspired by the biological neural network system in the cerebral 
cortex, where it processes the input percept using different areas of the cortex to abstract 
hierarchical levels of features [69]. The term “deep network”, opposite to a “shallow network”, 
refers to the fact that a DCNN usually consists of multiple convolutional layers and fully connected 
layers to extract high-level features from the data.  

• Crack classification 

Early applications applied DCNNs for crack classification tasks. Zhang, et al. [70] proposed an 
automated roadway crack detection method, using DCNN to predict whether the input image 
patches contained cracks or not. They compared it with SVM and the Boosting method, and 
concluded it had higher classification accuracy. Cha, et al. [39] proposed a DCNN architecture to 
detect concrete cracks in intensity images under realistic situations such as uneven lighting 
condition. They showed that it outperformed the traditional edge detection methods. Zhang, et al. 
[41] applied DCNN to detect pavement cracks and sealed cracks. Park, et al. [71] proposed a 
roadway crack detection method using DCNN to categorize the image patches into crack, road 
marking, and intact area. 

These crack classification methodologies are patch-based; that is, images are cropped into patches 
which have smaller sizes, and each image patch is classified by the DCNN as containing cracks or 
not. Thus, for patch-based methods, resolution on the extracted cracking information is limited. 

• Crack object recognition 

Another type of task that can be accomplished by DCNN is crack object recognition. Typical 
applications use region-based DCNNs [72,73] which can generate bounding boxes to enclose 
cracking features. Cha, et al. [74] modified the faster R-CNN [73] to detect five defective objects 
including concrete cracks. Maeda, et al. [75] applied different region-based DCNNs to generate 
bounding boxes for eight different types of roadway defects. Xue and Li [76] proposed a region-
based DCNN to detect and locate five types of defects in shield tunnel linings. Nevertheless, the 
issue of limited resolution on crack detection still exists in some applications using region-based 
DCNNs. 

• Crack segmentation 

More recent development in DCNN-based crack detection is pixel-wise crack classification 
through semantic segmentation. The semantic segmentation is a process to segment an image into 
different regions by assigning each image pixel with a categorical label. Thus, instead of 
identifying each image patch as containing cracks or not, semantic DCNNs predict each image 
pixel as a “crack” or “non-crack” pixel, leading to a higher resolution.  
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The encoder-decoder network is a type of semantic DCNN which has gained many researchers’ 
interests. The encoder-decoder network contains two essential components: an encoder network 
to extract features from the input image, and a decoder network to expand the features extracted 
through the encoder such that the size of the output probability map matches with that of the input 
image. Yang, et al. [77] proposed an encoder-decoder network based on VGG19 [78] to produce 
pixel-level crack maps on concrete pavements and walls. Zou, et al. [79] proposed DeepCrack, an 
encoder-decoder network based on SegNet [80] with multi-scale cross entropy losses. They 
showed it outperformed some other DCNNs such as U-Net [81] and SegNet on crack segmentation 
performance. Bang, et al. [14] proposed an encoder-decoder network based on ResNet [82] for 
roadway crack segmentation on images containing non-road objects. Dung [83] developed an 
encoder-decoder network with a VGG16-based encoder for crack segmentation on concrete 
surfaces. 

Besides the applications using encoder-decoder networks, some other applications proposed or 
applied other types of semantic DCNNs for crack segmentation tasks. Zhang, et al. [42], Tong, et 
al. [30], and Fei, et al. [40] developed CrackNet and its variants, which are different than the 
encoder-decoder networks in that their extracted feature maps maintain an invariant spatial size 
throughout all layers. Tan, et al. [84] applied Mask R-CNN [85], which is modified from the faster 
R-CNN [73] to further improve the detection resolution to pixel level, for crack segmentation. 

Overall, it can be observed as a general trend that, in recent decades, image-based crack detection 
methodologies have gradually evolved from non-learning-based to learning-based, with their 
detection resolutions improved to pixel level (i.e., crack segmentation). Nevertheless, despite the 
high adaptability of DCNN-based methodologies, several challenges as stated in Challenge 5, 6, 
and 7 in section 1.2 remain to be systematically investigated and properly addressed for this type 
of methodology to achieve robust and accurate detection performance. 

2.3 Technical Background for DCNN-Based Methodology 

Neural networks, or more precisely Artificial neural networks (ANN), are computing systems 
developed for performing multi-domain tasks through learning from data [38]. Vaguely inspired 
by the biological neural network system that constitutes the cerebral cortex, the ANN gains 
perception from the input data based on hierarchical feature abstraction through neurons and the 
associated connectivity patterns [38]. An artificial neuron is referred to as the central processing 
unit of an ANN, each connected to many others through “synapses” to mimic the functionality of 
biological neurons. A neuron represents a mathematical relationship between the input and output, 
for example, a weighted sum [38]. As illustrated by an example in Figure 2-1, an ANN often 
consists of an input layer, multiple hidden layers, and an output layer, where the neurons in each 
layer are connected with others through “synapses” defined by weights (e.g., 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑗𝑗 in Figure 
2-1). The influence or contribution of the input to each neuron is tuned by adjusting the weights 
through back-propagation [38]. In Figure 2-1, the forward-inference process refers to the 
calculation and storage of intermediate variables from the input layer to the output layer; and, the 
back-propagation process refers to the computation of the gradient given the model loss with 
respect to the network weights. Through a learning process based on back-propagation, the ANN 
can address problems such as object recognition by adapting to data reflecting the patterns of a 
specific domain. More details regarding the network learning process are described in section 2.3.4. 
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Figure 2-1. A graphical representation of an artificial neural network. 

Convolutional neural networks (CNN) [38,86] can be considered as a subclass of ANN, where a 
CNN takes image data as the input and employs a mathematical operation called convolution [38]. 
By performing convolution operations on the image data, CNNs can extract spatial features such 
as edge and shape to facilitate image-based object detection and pattern recognition tasks.  

Evolved from CNN, deep convolutional neural network (DCNN) [87] employs multiple (e.g., 
hundreds of) network layers that constitute a hierarchical layout, as implied by the term “deep” in 
its name. As described in section 2.2.2, with its high degree of model ability and self-adaptation 
to real-world scenarios, DCNN can achieve a high-level feature abstraction with minimum human 
intervention, thus it has become one of the most advanced and prevailing deep learning algorithms 
in the domain of image-based pattern recognition.  

In the following subsections, five topics related with the proposed DCNNs in this study, including 
the DCNN layers, sliding window technique, data augmentation, training scheme, and residual 
connection, are introduced.  

2.3.1 DCNN Layers 

In this section, the network layers utilized in this study to construct the proposed DCNN 
architectures are briefly described. More detailed technical information on these layers can be 
found in [38,88]. 

• Convolutional layer 

In a DCNN, the functionality of a convolutional layer is to perform feature extraction through a 
convolution operation. The convolution operation is a dot product between a convolutional kernel 
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and a subregion of the input feature map, plus a bias term, which can be symbolically expressed 
as Equation (2-1). In this equation, 𝐈𝐈 and 𝐘𝐘 are the input and output feature map, respectively; 𝐖𝐖 
and 𝑏𝑏 are the weights and bias of the convolutional kernel; ⊙ denotes the dot product. In the 
convolution operation, the kernel slides horizontally and vertically along the input with a step size 
called stride. Besides, zero paddings can be added to the input to produce an output with a specific 
dimension. Figure 2-2 (a) illustrates a two-dimensional (2D) example of the convolution operation 
through a matrix representation. In this example, a 3×3 (i.e., height×width, same hereafter) 
convolutional kernel is applied to a 4×4 input feature map with a stride of 1, resulting in a 2×2 
output. In Figure 2-2 (a), 𝑊𝑊𝑖𝑖𝑗𝑗, 𝐼𝐼𝑖𝑖𝑗𝑗, and 𝑌𝑌𝑖𝑖𝑗𝑗 denote the elemental entry of the weight matrix 𝐖𝐖, input 
matrix 𝐈𝐈, and output matrix 𝐘𝐘, respectively; 𝑏𝑏 denotes the kernel bias scalar; 𝐉𝐉 denotes a matrix of 
all ones whose dimension is the same as 𝐘𝐘. It can be seen that the convolution operation can be 
concisely represented as a matrix multiplication. The transposed convolution is also illustrated in 
Figure 2-2 (b), which can be interpreted as the inverse process of the convolution operation. The 
transposed convolution is described in section 2.3.1. It is worth noting that in this figure, to keep 
a concise narrative, the same symbolic notations are used to explain the convolution and transposed 
convolution operation, but they carry different values. 

 
𝐘𝐘 = 𝐖𝐖⊙ 𝐈𝐈 + 𝑏𝑏 ∙ 𝐉𝐉 (2-1) 

 
Figure 2-2. A matrix representation of the convolution and transposed convolution operation: (a) 

convolution; and (b) transposed convolution. 
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• Transposed convolutional layer 

As implied by the term “transposed”, the sparse matrix representation of the kernel weights in the 
transposed convolutional layer is symbolically the transpose of the weight matrix in the 
corresponding convolutional layer, as illustrated in Figure 2-2. Similar with the use of zero 
paddings in the convolution operation, boundary cropping is also often used in the transposed 
convolution to trim the output size. Figure 2-2 (b) shows a 2D example of the transposed 
convolution operation, in which a 2×2 input feature map is up-sampled into a 4×4 output by using 
a 3×3 transposed convolutional kernel with a stride of 1. In a semantic DCNN, multiple transposed 
convolutional layers with a stride larger than 1 are usually employed to gradually expand the size 
of the feature map. It is noted that each down-sampling process through either a convolutional or 
max pooling layer is paired with an up-sampling process performed by a transposed convolutional 
layer, thus the DCNN is able to maintain the same dimension (i.e., height and width) between the 
input image and the output probability map. 

• Max pooling layer 

In DCNN applications, it is often needed to reduce the dimension of the input representation such 
as the input image or hidden-layer feature map. By performing dimensionality reduction, the 
computational cost is reduced accordingly, thus improving DCNN training efficiency. Max 
pooling is an effective process often used in DCNN classification or segmentation tasks for 
dimensionality reduction [38]. A max pooling layer performs down-sampling on the input feature 
map by only keeping the maximum value in each kernel, as illustrated in Figure 2-3. In this figure, 
a 2×2 max pooling kernel with a stride of 2 is applied to the input feature map which has the 
dimension as 4×4. Correspondingly, the output reserves the maximum value in each subregion, 
resulting in a smaller size as 2×2. Through the max pooling operation, the feature map is down-
scaled by a factor of 2. The difference in terms of down-sampling by the max pooling vs. the 
convolution operation is that no learning process is involved in the max pooling layer. 

 
Figure 2-3. An example of the max pooling operation. 

• Batch normalization layer 

Batch normalization is a regularization technique proposed by [89] to address the issue of internal 
covariate shift. This issue often occurs during training, when the distribution of inputs to each layer 
shifts due to the change in network parameters [89]. Such an internal covariate shift is undesirable, 
because it potentially shifts the original training problem and thus deteriorate the model 
performance. The batch normalization algorithm employs two learnable parameters called scale 
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and shift factors to normalize the input distribution in each batch, such that the internal covariate 
shift issue is mitigated. The formulation of batch normalization is provided in Figure 2-4 [89].  As 
shown in this figure, first, an activation 𝑥𝑥 over a mini-batch is normalized by its mean and variance; 
then, the distribution of the normalized values of 𝑥𝑥 is modified by the two learnable parameters as 
the scale 𝛾𝛾 and shift 𝛽𝛽. 

 
Figure 2-4. The batch normalization algorithm [89]. 

• Nonlinear activation layer 

The leaky rectified linear unit (LReLU) [90] is adopted as a nonlinear activation function to add 
nonlinearity to a DCNN model. The formulation of LReLU is provided in Equation (2-2). As 
expressed in Equation (2-2), LReLU is a bi-linear function, where the gradient is equal to 1 for the 
non-negative neuron input, and a small positive value α for the negative input. By activating the 
negative neuron inputs during back-propagation with a small positive gradient α, LReLU can 
avoid the “dying” neuron problem [38,90] which often occurs upon using the rectified linear unit 
(ReLU) [91].  

 
LReLU (𝑥𝑥) = � 𝑥𝑥, 𝑥𝑥 ≥ 0

α𝑥𝑥, 𝑥𝑥 < 0 (2-2) 

where 𝑥𝑥 is the neuron input; α is a small positive value. 

• Dropout layer 

Dropout was proposed by [92] as an effective regularization technique to address the issue of 
overfitting. Overfitting occurs when a DCNN becomes too attuned to the training dataset that it 
loses the ability to properly adapt to a new dataset. The dropout layer prevents overfitting by 
randomly deactivating neurons from the previous layer with a certain probability (e.g., 50%). 
During the training process, dropout forces the network to adapt to different neurons, thus 
improving generalization.  
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• Fully connected layer 

A fully connected layer is usually adopted in a DCNN for image classification tasks. The term 
“fully connected” implies that each neuron in this layer has connections to all the neurons in the 
previous layer, as described by Equation (2-3). This operation is a matrix multiplication plus a bias 
vector. The fully connected layer can largely reduce the size of the feature map, and the output 
(i.e., scores) from this layer is usually mapped to a probability distribution for class prediction. 

 𝐲𝐲 = 𝐖𝐖 ∙ 𝐱𝐱 + 𝐛𝐛 (2-3) 

in this equation, 𝐱𝐱 denotes a vector flattened from the neuron input; 𝐖𝐖 denotes the weight matrix 
of the fully connected layer; 𝐛𝐛 denotes the bias vector; and, 𝐲𝐲 denotes the neuron output. 

• Softmax layer 

A softmax layer is usually placed at the end of a DCNN to normalize the pixel values into a 
probability of each pixel belonging to a specific class. The softmax function is expressed as 
Equation (2-4). In this equation, 𝑥𝑥𝑖𝑖 denotes the pixel value at the 𝑖𝑖𝑡𝑡ℎ depth channel of the input; 𝑛𝑛 
denotes the number of classes which is equal to the depth (i.e., third dimension) of the input matrix. 
Softmax (𝑥𝑥𝑖𝑖) produces the probability of each pixel belonging to the 𝑖𝑖𝑡𝑡ℎ class.  

 
Softmax (𝑥𝑥𝑖𝑖) =

𝑒𝑒𝑥𝑥𝑖𝑖
∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (2-4) 

2.3.2 Sliding Window Technique 

The sliding window technique is adopted by many researchers [39,93,94] to reduce the dimension 
of input image and increase the number of image samples through a cropping operation. As 
illustrated by Figure 2-5 (a), a square kernel slides along the horizontal and vertical direction of an 
image, with 50% overlap, to crop the original image into image patches which have smaller spatial 
dimensions to reduce computational cost. In this study, image patches of 256×256 pixels are 
generated for training and testing.  

Figure 2-5 (b) shows the zoomed-in view of the sliding window process, where different data 
regions are utilized multiple times during prediction. Then, a summed crack probability map with 
the same size as the original image is generated through arithmetic addition, which is an inverse 
operation of the sliding window process; the values in the summed probability map are divided by 
the divisors as shown in Figure 2-5 (b), based on how many times each image pixel is predicted. 
Finally, a binarized crack map is generated from the crack probability map with a threshold of 0.5, 
where white pixels indicate cracks and black ones indicate the background. 
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Figure 2-5. The sliding window technique: (a) image patch generation; and (b) zoomed-in view. 

2.3.3 Data Augmentation 

Data augmentation is another effective means to reduce overfitting and improve generalization of 
a DCNN by artificially increasing the number of image data [95]. It is a process to generate 
additional samples of an image by applying label-preserving transformations such as rotation, 
which leave the underlying class unchanged [96]. Common data augmentation techniques include 
random rotation, translation, mirroring, and scaling, etc. [97]. In this study, the number of image 
patches is effectively increased through these data augmentation techniques. 

2.3.4 Training 

Three topics related with the DCNN training process, including the cost function, optimization 
algorithm, and parameter initialization, are introduced in this section.  

• Cost function 

In this study, the cross entropy loss [98] is employed as the cost function to measure the 
discrepancy between the ground truth and prediction. The formulation of the cross entropy loss is 
expressed in Equation (2-5).  

 
𝐸𝐸 = −

1
𝑚𝑚
����𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘 ∙ ln�𝑝𝑝𝑗𝑗,𝑖𝑖
𝑘𝑘 ��

𝑛𝑛

𝑖𝑖=1

𝑁𝑁

𝑗𝑗=1

𝑚𝑚

𝑘𝑘=1

+ 𝛺𝛺(𝐰𝐰) (2-5a) 

 
𝛺𝛺(𝐰𝐰) =

𝜆𝜆
2
𝐰𝐰T𝐰𝐰 (2-5b) 

in this equation, 𝐸𝐸 denotes the cross entropy loss; 𝑚𝑚 denotes the mini-batch size, which refers to 
the number of input images participating in the training in each iteration; 𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘  is a logical operator, 
where the superscript 𝑘𝑘 denotes the 𝑘𝑘𝑡𝑡ℎ image; the subscripts 𝑗𝑗 and 𝑖𝑖 indicate the logical operator 
is evaluated at the 𝑗𝑗𝑡𝑡ℎ pixel for the 𝑖𝑖𝑡𝑡ℎ class; 𝑁𝑁 is the total number of pixels in each image; 𝑡𝑡𝑗𝑗,𝑖𝑖

𝑘𝑘  is 
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equal to 1 if the pixel belongs to the 𝑖𝑖𝑡𝑡ℎ class and 0 otherwise; 𝑛𝑛 is the number of classes, which 
is equal to 2 (i.e., “crack” vs. “non-crack”) in this study; 𝑝𝑝𝑗𝑗,𝑖𝑖

𝑘𝑘  is the probability of the pixel 
belonging to the 𝑖𝑖𝑡𝑡ℎ  class, which is calculated by Equation (2-4). An additional penalty term 
expressed as Equation (2-5b) is introduced in Equation (2-5a) to regularize the training process by 
penalizing large weights. In Equation (2-5b), 𝐰𝐰 denotes a vector whose entries are the learnable 
parameters including the weights in the convolutional layers, fully connected layers, transposed 
convolutional layers, and batch normalization layers (i.e., scale and shift factors); the superscript 
T denotes the transpose operation; 𝜆𝜆 is a hyperparameter called weight decay factor to adjust the 
degree of penalization to the weights. 

• Optimization algorithm 

During DCNN training, the objective is to reduce the discrepancy between the ground truth and 
prediction by minimizing the cost function. In this study, the mini-batch stochastic gradient descent 
(SGD) with momentum [99] is adopted as the optimization algorithm. The formulation is 
expressed in Equation (2-6). In this equation, 𝛉𝛉 is the model parameter vector which consists of 
two components: the weight vector 𝐰𝐰 and bias vector 𝐛𝐛 in the DCNN; 𝛉𝛉𝑡𝑡,𝑚𝑚𝑡𝑡 with a subscript 𝑡𝑡 
indicate the parameter vector and mini-batch input at the 𝑡𝑡𝑡𝑡ℎ iteration, respectively; 𝐸𝐸 denotes the 
cross entropy loss, calculated by Equation (2-5); 𝜀𝜀 is a hyperparameter called momentum which 
adjusts the learning speed; 𝑟𝑟 is another hyperparameter to tune the efficiency of learning which is 
referred to as the learning rate.  

i) Learning scheme 

as expressed in Equation (2-6c), a piece-wise learning rate scheme is employed for the 
optimization in this study; that is, the learning rate decays every 2 epochs by a drop factor of 0.8. 
An epoch is a full pass of all the training data through mini-batches. In Equation (2-6c), 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 
denotes the initial learning rate. A step-wise decayed learning rate can encourage fast convergence 
at the early stage of training and enable fine-tuning on the model parameters at the late stage. 

• Parameter initialization 

i) Weight and bias 

In this study, upon training DCNNs, the weights associated with the convolutional layers, fully 
connected layers, and transposed convolutional layers are initialized by the Glorot initializer [100]. 

 
Δ𝛉𝛉𝑡𝑡+1 = 𝜀𝜀 ∙ 𝛉𝛉𝑡𝑡 − 𝑟𝑟 ∙

𝜕𝜕𝐸𝐸
𝜕𝜕𝛉𝛉�𝛉𝛉𝑡𝑡,𝑚𝑚𝑡𝑡

 (2-6a) 

 
𝛉𝛉𝑡𝑡+1 = 𝛉𝛉𝑡𝑡 + Δ𝛉𝛉𝑡𝑡+1 (2-6b) 

 
from epoch 2(𝑀𝑀− 1) to 2𝑀𝑀, 𝑟𝑟 = (0.8)𝑀𝑀−1 ∙ 𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖, 𝑀𝑀 ∈ ℤ+ (2-6c) 
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This initializer independently samples each weight from a Gaussian distribution with zero mean 
and a variance which is related with the dimension of the weights. The initial biases are set as zero.  

ii) Scale and shift factor 

The scale and shift factor in each batch normalization layer are also updated during training. They 
are initialized as 1 and 0, respectively. 

2.3.5 Residual Connection 

In DCNN-related studies, an intuitive strategy to improve the network performance is to increase 
the model capacity by stacking more layers. However, as discovered by some researchers 
[82,101,102], increasing the network depth does not always result in improved performance; the 
deeper architecture might not outperform its shallower counterpart due to performance degradation 
brought by considerably increased network depth. To alleviate such issues in deep architectures, 
the concept of residual connection (also known as skip connection) was proposed by [82], as 
illustrated by Figure 2-6. The residual connection can improve the network performance by 
integrating the hierarchical features from different layers through a shortcut connection, which 
facilitates the training process [82]. Also, according to [101], the use of residual connections in 
deep architectures can alleviate the issues of singularities in models which slow down the learning 
process and lead to performance degradation.  

 
Figure 2-6. Residual connection (redrawn from [82]). 

2.4 Laser Image and Measurement System 

A laser imaging system, manufactured by AMES Engineering, is adopted to capture both range 
(i.e., elevation) and intensity image data from roadway surfaces. Integrated into a survey vehicle, 
this laser imaging system consists of three components: a 3D laser camera [Figure 2-7 (a)], a data 
acquisition (DAQ) module [Figure 2-7 (b)], and an on-board data processing computer [Figure 2-7 
(c)]. The 3D camera is mounted on the rear top of the vehicle. The vertical distance between the 
camera module and the ground is 2.13 m (84 inch), such that the camera can capture a 3.96 m (156 
inch) wide transverse profile during each scan. The scanned profile contains 4096 pixels, making 
the transverse pixel resolution as close to 1 mm/pixel (0.04 inch/pixel). Along the longitudinal 
direction, to maintain a uniform longitudinal pixel resolution as 2 mm/pixel (0.08 inch/pixel), the 
sampling rate of the DAQ is set at 4856 Hz when the vehicle is driving under 9.83 m/s (22 mph). 
The depth resolution of the acquired range image data is 0.1 mm. 
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Figure 2-7. The laser imaging system: (a) vehicle-mounted 3D camera; (b) DAQ module; and (c) data 

processing computer. 

2.4.1 Measuring Principle 

The range and intensity image data are obtained through laser-based 3D triangulation, as illustrated 
by Figure 2-8. The laser line projector is positioned perpendicular to the measurement plane, while 
the laser camera views the object from an angle. During each scan, a laser line is projected 
perpendicular to the roadway surface. By measuring the intensity value at each pixel location, an 
intensity profile can be captured. Meanwhile, by interpreting the pixel shifts in the detector view, 
as shown in Figure 2-8, the range information at each pixel location can also be calculated through 
3D triangulation. A range profile at the same location where the laser line is projected can be 
obtained along with the intensity profile. Thus, the acquired range and intensity image data in this 
study have pixel-to-pixel location correspondence. 

 
Figure 2-8. Laser-based 3D triangulation. 
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2.5 Performance Evaluation 

2.5.1 Precision-Recall Analysis 

In binary segmentation study, the number of foreground objects is usually much fewer than that 
of background, which is referred to as the class imbalance issue [103]. In the case of crack 
segmentation, the ratio between the total number of foreground (i.e., crack) and background (i.e., 
non-crack) pixels is usually quite small. One of the most straightforward and commonly used 
metrics, Accuracy, has very poor performance on a class-imbalanced dataset. Accuracy is defined 
as the number of correctly identified pixels over all predicted pixels. Given an image where the 
majority belongs to the non-crack class, for example, 90%, the Accuracy value will still be as high 
as 90% even if all the pixels are predicted as non-crack ones and none of the true crack pixels is 
correctly identified. Therefore, the adopted metrics need to be able to address the issue due to class 
imbalance.  

In this study, the precision-recall analysis [104] is adopted to evaluate the performance of the 
proposed crack segmentation methodologies on a class-imbalanced dataset. Three metrics 
including the Precision, Recall, and F1 score are included in this analysis, as expressed in Equation 
(2-7). In this equation, Precision is defined as the ratio of the number of correctly identified true 
crack pixels to the number of pixels predicted as cracks; Recall is defined as the ratio of the number 
of correctly identified true crack pixels to the number of true crack pixels; and, F1 score is the 
harmonic mean of Precision and Recall, which provides a comprehensive measure on the 
segmentation performance. 

 Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (2-7a) 

 Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
 (2-7b) 

 F1 =
2 ∙ Precision ∙ Recall
Precision + Recall

 (2-7c) 

where 𝑇𝑇𝑇𝑇 denotes the number of correctly identified true crack pixels; 𝐹𝐹𝑇𝑇 denotes the number of 
non-crack pixels that are misidentified as crack pixels; and, 𝐹𝐹𝑁𝑁 denotes the number of true crack 
pixels misidentified as non-crack pixels. 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, 𝐹𝐹𝑁𝑁, and 𝑇𝑇𝑁𝑁 (i.e., true negative) are illustrated 
in Figure 2-9. 
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Figure 2-9. A schematic diagram to explain the performance metrics. 

2.5.2 Intersection over Union 

Intersection over union (IOU) [105], also known as the Jaccard index, is commonly used for 
performance evaluation in the field of image segmentation. The expression of IOU is formulated 
in Equation (2-8), in which the definition of 𝑇𝑇𝑇𝑇, 𝐹𝐹𝑇𝑇, and 𝑇𝑇𝑁𝑁 is the same as defined in Equation 
(2-7). As illustrated in Figure 2-9, IOU reflects the degree of overlap between two objects. In this 
study, the IOU is evaluated on the “crack” class to provide a measure on the overlap between the 
ground truth crack object and predicted crack object. 

 
IOU =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁

 (2-8) 

2.5.3 Boundary F1 Score 

Other than F1 and IOU, another type of metrics called boundary F1 (BF) score [106] is also 
adopted in this study. As implied by the name, the BF score is the F1 score extended to semantic 
segmentation, which quantitatively measures the similarity between the boundary (i.e., a contour) 
of the ground truth object and that of the predicted object. The BF score varies from 0 to 1, where 
the value 1 indicates an exact match between the contours of two objects. The formulation of the 
BF score is provided in [106]. In this study, the BF score is calculated on the “crack” class to offer 
an additional measure on the similarity between the ground truth of crack and the predicted crack 
object. 
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CHAPTER 3: PROPOSED TECHNIQUES 

This chapter describes the proposed image-based crack detection techniques to address the 
challenges mentioned in section 1.2. The detailed organization is as follows: i) a non-learning-
based technique by using frequency domain filtering is proposed in section 3.1 to address the issues 
existing in range image data; ii) in section 3.2, a series of DCNN classifiers with different 
hyperparameter configurations are developed, to investigate the impact from hyperparameter 
selection on roadway crack classification with range image data; iii) section 3.3 introduces the 
proposed DCNN-based crack segmentation technique to achieve pixel-level detection 
performance on range image data; and iv) in section 3.4, deep learning-based data fusion 
techniques for both crack classification and segmentation are proposed to tackle image data of 
real-world complexities and achieve robust detection performance. 

3.1 Image Processing Technique for Robust Crack Detection Using Range Image Data 

3.1.1 Motivation 

One issue with most of the non-learning-based crack detection methods (section 2.1) is that they 
usually do not consider crack connectivity and boundary [37], and that they have the drawbacks 
as being sensitive to image noises [107]. It is difficult to extract the cracking properties such as 
width and area if enclosed crack boundaries are not identified. Instead, contouring analysis can 
provide an enclosed boundary for each individual crack identified and offer accurate estimate on 
the cracking properties. Contouring analysis is an imaging technique which has been widely used 
in geology and oceanology to interpret terrain information [108-111], but it has not been explored 
for crack detection. In this study, a boundary extraction algorithm (i.e., marching squares) for 
contouring analysis is employed to extract single-level contour candidates for the subsequent crack 
detection and classification process. The assumption of applying this image technique for crack 
detection is that, cracked regions have different elevations than the surrounding areas. Based on 
this assumption, one necessary step before applying the contouring analysis is to ensure the 
analyzed image surface is free from i) non-crack surface variations [7], which are usually caused 
by rutting [Figure 3-1 (a)], uneven lanes [Figure 3-1 (a)], and ripples due to vertical vibration of 
the data acquisition vehicle [Figure 3-1 (b)] [36]; and ii) grooved patterns [Figure 3-1 (c)]. If these 
features exist in the data, the application of contouring analysis might lead to misidentification on 
surface cracks.  
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Figure 3-1. Surface variations: (a) rutting and uneven lanes; (b) ripples due to vehicle vibration; and (c) 

grooved patterns. 

Another issue is related with parameter selection in image pre-processing. To facilitate a robust 
crack detection via contouring analysis, critical pre-processing steps are required to remove the 
surface variations and grooved patterns, which are usually characterized by their unique features 
in frequency domain comparing against those of cracks. Existing spatial domain methods, 
including histogram transformation [54,112,113], median-filter-based crack enhancement 
[52,53,114], and surface fitting [36], are applied for background correction and crack enhancement 
purposes, but they often require subjective prior knowledge on parameter selection; meanwhile, 
very few studies [32,115] have explored the idea of using frequency domain filtering techniques 
on crack detection and removal of surface variations. And yet, rigorous justification in the selection 
of the filter parameters is still missing in these studies.  

To address these issues, a robust crack detection methodology that utilizes frequency domain 
filtering and contouring analysis is proposed. This methodology makes use of range image data to 
accurately detect cracks based on their elevation information under realistic field conditions, 
including image noises, surface variations, and grooved patterns. More specifically, during image 
pre-processing of the original range data, frequency domain filtering is employed to remove 
surface variations and grooved patterns and suppress image noises. Unlike most of the non-
learning-based methods which are usually involved with subjective parameter selection, in the 
proposed technique, determination on the parameters (e.g., cutoff frequency) is based on a physical 
relationship between the crack width and its frequency domain information derived herein. Then, 
the contouring analysis is applied to extract cracks from the filtered range surface with enclosed 
boundaries. Thus, by proposing this methodology, Challenges 2, 3, and 4 as described in section 
1.2, which correspond to the issues of disturbances in range image data, subjectivities from image 
pre-processing, and crack boundaries, respectively, can be effectively addressed. 

3.1.2 Proposed Methodology 

• Flow chart of the proposed crack detection methodology 

The flow chart of this methodology is illustrated in Figure 3-2. In the flow chart, blue blocks with 
a dashed border represent the existing procedures, and green blocks with a solid border represent 
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the novel procedures developed in the proposed methodology. This methodology first implements 
the frequency domain filtering based on a derived relationship between the crack width and cutoff 
frequency to remove the inherent issues in the range images including surface variations, image 
noises, and grooved patterns; then, the marching squares algorithm is employed to detect single-
level contours thresholded by the crack depth; finally, a set of logics and criteria is developed for 
contour qualification and crack classification. Future research effort will be devoted to extracting 
cracking features such as crack width from the detected crack contours. The novelty of this 
methodology is that it provides a systematic framework to remove the inherent issues in the range 
images with less-subjective parameter selection, and that it develops a set of logics and criteria for 
effective crack classification on contour-based crack detection. 

 
Figure 3-2. Flow chart of the proposed crack detection methodology. 

3.1.3 3D Laser Range Image Data 

The proposed crack detection methodology makes use of range image data. The advantages of 
using range data over intensity data reside in two aspects: i) when adopting range image for surface 
crack detection, cracks are physically associated with the elevation of the surface, where the 
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cracked regions typically have different elevations than their surrounding areas; and ii) using range 
data can reduce the influences from varying illumination condition, blemishes, and low contrast 
between cracks and surrounding surface. Figure 3-3 illustrates an acquired bridge deck image data 
[Figure 3-3 (a)] with its close-up details [Figure 3-3 (b) and(c)], which is captured by the laser 
imaging system as introduced in section 2.4. 

 
Figure 3-3. A bridge deck image data with close-up details: (a) bridge deck intensity data; (b) intensity image; 

and (c) range image. 

3.1.4 Frequency Domain Filtering 

In the pre-processing stage, frequency domain filtering techniques are applied to remove surface 
variations and suppress image noises. In a digital image, crack edges and image noises mostly 
contain high frequency contents; In contrast, surface variations due to rutting, uneven lanes, and 
vertical vibration of the data acquisition vehicle (illustrated as Figure 3-1) contain low frequency 
contents. The goal of applying frequency domain filtering is, by designing filters with appropriate 
parameter settings, the unwanted surface features in crack detection (i.e., noises and surface 
variations) can be eliminated effectively; meanwhile, the critical cracking information such as 
crack edges is preserved during the filtering process. The Discrete Fourier Transform (DFT) is 
applied to the range image data 𝑧𝑧0, to acquire the 2D DFT coefficients 𝑍𝑍0; e.g., the 2D DFT of an 
M-by-N (pixels) image can be formulated as Equation (3-1). Then, a comprehensive filtering 
process is conducted on the obtained DFT coefficients 𝑍𝑍0 to obtain filtered coefficients 𝑍𝑍1. Finally, 
the inverse DFT [formulated as Equation (3-2)] is performed on the filtered coefficients 𝑍𝑍1, to 
reconstruct the filtered image surface 𝑧𝑧1.  
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 𝑍𝑍0(𝑘𝑘, 𝑙𝑙) =
1
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 (3-2) 

where 𝑧𝑧(𝑥𝑥,𝑦𝑦) is the original range data before filtering, with the pixel coordinates 𝑥𝑥 and 𝑦𝑦 ranging 
as 0 ≤ 𝑥𝑥 ≤ 𝑀𝑀 − 1 and 0 ≤ 𝑦𝑦 ≤ 𝑁𝑁 − 1; 𝑍𝑍(𝑘𝑘, 𝑙𝑙) is the DFT coefficient, where 𝑘𝑘, 𝑙𝑙 are the row and 
column indices with  0 ≤ 𝑘𝑘 ≤ 𝑀𝑀 − 1 and 0 ≤ 𝑙𝑙 ≤ 𝑁𝑁 − 1. The subscripts “0” and “1” indicate the 
status as before and after filtering process, respectively. 

 
Figure 3-4. Illustration of a simulated crack: (a) spatial domain; and (b) frequency domain. 

• Relationship between crack width and cutoff frequency 

To determine the parameters for the frequency filtering process, a physical relationship between 
the width of a crack and its frequency domain information is derived herein. A rectangular-shaped 
crack is simulated in a flat surface with zero elevation, as illustrated in Figure 3-4 (a); the 
mathematical expression of the crack is formulated as Equation (3-3a), where 𝐵𝐵 and ℎ denote the 
width and depth of the crack, respectively. Both 𝐵𝐵 and ℎ are in millimeter (mm). It can be shown 
that, the Fourier transform of Equation (3-3a) is expressed as Equation (3-3b). Subsequently, the 
magnitude of the Fourier transform is formulated as Equation (3-3c), which is illustrated in Figure 
3-4 (b). By letting Equation (3-3c) equal to zero [see Equation (3-3d)], the frequency bandwidth 
within ± 1

𝐵𝐵
 cycle/mm (i.e., the main lobe) is obtained as the bandwidth where most of the image 

energy is located. This frequency bandwidth is indicated by the range constrained within the red 
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dashed lines in Figure 3-4 (b). Therefore, when designing a low-pass filter to suppress image noise 
whilst preserving this crack, the corresponding cutoff frequency can be set as 1

𝐵𝐵
 cycle/mm, i.e., 

inversely proportional to the crack width 𝐵𝐵. This relationship illustrates the cutoff frequency can 
be physically associated with the crack width. By assigning such a cutoff frequency, majority of 
the image energy associated with the crack shape, which concentrates at the main lobe, resides in 
the frequency pass band. Likewise, based on this relationship, the maximum and minimum width 
of the cracks preserved through the filtering can be achieved by properly assigning the cutoff 
frequencies of the high-pass and low-pass filter, respectively.  

 𝑓𝑓(𝑥𝑥) = −ℎ ∙ rect �
𝑥𝑥 − 𝐵𝐵𝑐𝑐
𝐵𝐵

� (3-3a) 

 ℱ(𝜉𝜉) = � 𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑥𝑥𝑑𝑑𝑥𝑥
∞

−∞
= −ℎ𝐵𝐵 ∙ sinc(𝜉𝜉𝐵𝐵) ∙ 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝐵𝐵𝑐𝑐  (3-3b) 

 |ℱ(𝜉𝜉)| =  ℎ𝐵𝐵 ∙ |sinc(𝜉𝜉𝐵𝐵)| = ℎ𝐵𝐵 ∙ �
sin(𝜋𝜋𝜉𝜉𝐵𝐵)
𝜋𝜋𝜉𝜉𝐵𝐵

� (3-3c) 

 |ℱ(𝜉𝜉)| = 0, at 𝜉𝜉 = ± 𝑖𝑖
𝐵𝐵

, 𝑖𝑖 ∈ ℤ+ (3-3d) 

in Equation (3-3a), 𝑓𝑓(𝑥𝑥) denotes the rectangular-shaped crack function; ℎ is the crack depth; 𝑥𝑥 is 
the coordinate in length; 𝐵𝐵𝑐𝑐 is the horizontal offset from the origin, and 𝐵𝐵 denotes the crack width; 
ℎ, 𝑥𝑥, 𝐵𝐵𝑐𝑐, and 𝐵𝐵 carry the same physical unit as mm; rect(∙) is the rectangular function, defined in 
Equation (3-4a). In Equation (3-3b), ℱ(𝜉𝜉) denotes the Fourier transform, where 𝜉𝜉 is the frequency; 
sinc(∙) is the normalized sinc function, defined in Equation (3-4b). 
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⎪
⎨

⎪
⎧0 𝑖𝑖𝑓𝑓 |𝑡𝑡| >
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2

1
2

𝑖𝑖𝑓𝑓 |𝑡𝑡| =
1
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1 𝑖𝑖𝑓𝑓 |𝑡𝑡| <
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2

 (3-4a) 

 sinc(𝑡𝑡) =
sin (𝜋𝜋𝑡𝑡)
𝜋𝜋𝑡𝑡

 (3-4b) 

• Choice of filters 

On the choice of filters for the proposed frequency domain filtering, three types of image filters 
including the Ideal filter, the Butterworth filter, and the Gaussian filter [116] have been considered. 
The Ideal filter has a sharp transition between the pass band and stop band, producing ripples 
known as the ringing artifact [116] near the sharp edges of the filtered spatial domain image. Such 
ringing artifact is often undesirable and will cause detrimental effects on the subsequent crack 
detection. The Butterworth filter has a smoother transition band compared with the Ideal filter, 
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which helps reduce the ringing artifact. The Gaussian filter has the identical non-oscillatory form 
in both the spatial and frequency domain  [117], thus does not incur any ringing artifact in the 
filtered image. 

 
Figure 3-5. Zoomed-in views: (a) the filtered crack surface; (b) the edge of the filtered crack; and (c) the 

bottom of the filtered crack. 

To demonstrate their performance on preserving the cracking information, the above low-pass 
filters are applied to the simulated cracked surface [Figure 3-4 (a)], and the filtering results are 
demonstrated in Figure 3-5. According to the derived relationship between the crack width and its 
frequency domain information, the cutoff frequency for the low-pass filters is selected as 1

𝐵𝐵
 

cycle/mm. In Figure 3-5 (a), the original cracked surface is compared with the surfaces filtered by 
the Ideal filter, the Gaussian filter, and the Butterworth filters with different orders. It can be 
observed from Figure 3-5 (a), that all three types of filters are capable of preserving the crack by 
assigning the cutoff frequency based on the derived relationship. However, as can be observed 
from the zoomed-in view in Figure 3-5 (b), the Ideal filter incurs ringing artifact on the crack edge. 
In addition, ringing starts to appear on the surfaces filtered by the Butterworth filters with order 
≥ 3, but it is less obvious than that incurred by the Ideal filter. Meanwhile, no ringing artifact is 
produced in the filtered surface using the Gaussian filter. From both the Figure 3-5 (b-c), as the 
order of the Butterworth filter increases, the shape of the filtered crack approaches to that by the 
Ideal filter. At lower order (𝑛𝑛 = 1, 2), the Butterworth filters do not cause ringing in the filtered 
surface, showing similar performance with the Gaussian filter. But, it is worth noting that, by 
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applying the Ideal filter and the Butterworth filter with order ≥ 2, the filtered crack depth is 
undesirably exaggerated [Figure 3-5 (c)].  

In short, all three types of filters are capable of preserving the crack by properly assigning the 
cutoff frequency according to the derived relationship; among these filters, the Gaussian filter 
neither produces ringing artifacts in the filtered surface, nor exaggerates the depth of the filtered 
crack, unlike what the other two types of filters do. Although the above findings are obtained using 
the low-pass filter as a demonstration example, the ringing behavior in the transition band and the 
magnitude mismatch observed for the ideal filter and the Butterworth filter are also applicable in 
the high-pass and the notch filter cases [117]. Based on the above findings, the Gaussian filter is 
utilized in the filtering process in this study. 

• High-pass filtering to eliminate surface variations 

Road surface usually contains variations caused by rutting, uneven lanes, and vertical vibration of 
the data acquisition vehicle, as illustrated in Figure 3-1. The existence of these surface variations 
might deteriorate the crack detection performance. Conventional methods such as median filtering 
[52,53,114] and surface fitting [36] are adopted for background correction and crack enhancement 
purposes, but they often require subjective parameters (e.g., kernel size of the spatial domain 
filters). The frequency domain filtering applied in this methodology, however, follows the physical 
relationship between the frequency domain information and crack width to determine the filter 
parameters (e.g., cutoff frequency). Therefore, the proposed frequency domain filtering can 
provide robust and consistent results in practice and is independent from images or operating 
personnel. 

In this study, the Gaussian high-pass image filter is selected to eliminate the low frequency surface 
variations, because it does not incur ringing artifacts in the filtered surface, due to its identical non-
oscillatory form in both the frequency and spatial domain. The Gaussian high-pass image filter is 
expressed as Equation (3-5). The formulation is modified from that in [116] to account for the 
possible different pixel resolutions during 2D filtering of image data. 

 
𝐻𝐻ℎ(𝑢𝑢, 𝑣𝑣) = 1 − 𝑒𝑒

− 

𝑢𝑢2
𝑝𝑝𝑢𝑢2
+𝑣𝑣

2

𝑝𝑝𝑣𝑣2

2𝐷𝐷ℎ
2  

(3-5) 

where 𝐻𝐻ℎ  denotes the Gaussian high-pass filter; 𝑢𝑢, 𝑣𝑣  are the spectral coordinates along 
longitudinal and transverse direction, respectively, ranging from – 1

2
 to 1

2
 cycle/pixel; 𝑝𝑝𝑢𝑢 and 𝑝𝑝𝑣𝑣 are 

the pixel resolutions (unit: mm/pixel) along longitudinal and transverse direction, respectively; 
𝐷𝐷ℎ = 1

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
 (unit: cycle/mm) is the high-pass cutoff frequency, where 𝐵𝐵𝑚𝑚𝑚𝑚𝑥𝑥  (unit: mm) is the 

maximum width of the cracks to be detected. 

• Low-pass filtering to suppress image noises 

Image noises can occur during image acquisition, coding, transmission, and processing stage, and 
are usually shown as random variations of brightness or color [118]. On roadway surface, noises 
created by varying illumination condition, shadows, blemishes, concrete spall, etc., often bring 
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difficulties in image-based crack detection [119]. Therefore, one critical step in image pre-
processing is to suppress the image noises for improved crack detection performance. Noise is 
usually manifested as the high frequency content in an image, because it involves sharp changes 
in brightness or color. Based on the findings in section 3.1.4, the Gaussian low-pass image filter, 
expressed as Equation (3-6) [116], and modified similarly as Equation (3-5), is applied to suppress 
the high frequency image noises in this study. 

 
𝐻𝐻𝑙𝑙(𝑢𝑢, 𝑣𝑣) = 𝑒𝑒
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𝑢𝑢2
𝑝𝑝𝑢𝑢2
+𝑣𝑣
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𝑝𝑝𝑣𝑣2

2𝐷𝐷𝑙𝑙
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(3-6) 

in the above expression, 𝐻𝐻𝑙𝑙 denotes the Gaussian low-pass filter; 𝐷𝐷𝑙𝑙 = 1
𝐵𝐵𝑚𝑚𝑖𝑖𝑚𝑚

 (unit: cycle/mm) is the 
low-pass cutoff frequency, where 𝐵𝐵𝑚𝑚𝑖𝑖𝑛𝑛  (unit: mm) is the minimum width of the cracks to be 
detected. 

• Multiple notch filtering to remove grooves 

Groove is a non-crack periodic pattern of a uniform depth, width, and shape on roadway surface. 
Surface grooving is an effective means to increase road traction as well as prevent vehicle sideways 
skidding, reduce hydroplaning, and provide effective braking surface [120-122]. However, in the 
presence of grooves, detection of cracks is particularly difficult, as the cracks have similar 
appearance to the grooves [123]. For example, grooves are often misidentified as cracks in the 
process of crack detection, because the groove width and depth are similar to those of cracks [124]. 
Figure 3-6 (a) illustrates a longitudinal grooved pattern in a cracked surface. In frequency domain, 
this periodic pattern shows as frequency harmonics [Figure 3-6 (b)], which can be effectively 
removed by applying notch filtering. A Gaussian multiple notch filter is designed in this 
methodology to remove grooved patterns in the image surface. The choice to adopt the Gaussian 
filter for notch filtering is for the same reason described in section 3.1.4. By implementing the 
multiple notch filter (Figure 3-7), the grooves can be effectively eliminated without losing cracking 
information. The Gaussian multiple notch filter proposed in this study is expressed as Equation 
(3-7). 
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Figure 3-6. Grooves in a cracked surface: (a) spatial domain; and (b) frequency domain. 

 
Figure 3-7. Multiple notch filter. 
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where 𝐻𝐻𝑛𝑛 denotes the Gaussian multiple notch filter; 𝑞𝑞 is a non-zero integer ranging from −𝑄𝑄 to 
𝑄𝑄, where 𝑄𝑄 refers to the number of frequency harmonics to be removed; 𝐹𝐹0 = 1

𝑔𝑔
 is the fundamental 

frequency, where 𝑔𝑔 (unit: mm) denotes the groove spacing; 𝐷𝐷𝑛𝑛 denotes the frequency radius of 
each circle-shaped notch filter (Figure 3-7); 𝜃𝜃  denotes the orientation of the grooved pattern, 
measured counterclockwise with respect to the longitudinal direction; for longitudinal groove, 𝜃𝜃 =
0°; for transverse groove, 𝜃𝜃 = 90°. 
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3.1.5 Crack Detection Based on Contouring Analysis 

Conventional edge detection techniques have the drawbacks as being very sensitive to image 
noises [107]. Moreover, they do not consider crack connectivity and boundary [37], bringing 
difficulties to extracting each individual crack. The contouring analysis adopted in this 
methodology, however, can detect an enclosed crack boundary, lending itself to accurate 
estimation on cracking properties such as area, perimeter, etc. In an illustrative example shown as 
Figure 3-8, a crack is detected by both Canny edge detection [Figure 3-8 (a)] and the contouring 
analysis [Figure 3-8 (b)]. It is worth noting that in Figure 3-8 (b), the detected contour is 
superimposed on the cracked range surface. While discontinuities [circled in red in Figure 3-8 (a)] 
in crack boundary are observed in Canny edge detection result, an enclosed crack boundary [shown 
as a black contour in Figure 3-8 (b)] is accurately extracted by using the contouring analysis. The 
assumption of using the contouring analysis for surface crack detection is that, surface cracks have 
different elevations than their surrounding areas. This assumption, however, has a limitation that 
the performance might be deteriorated when detecting shallow cracks where the reduction of 
elevation is not significant enough. 

 
Figure 3-8. A crack detection example using Canny edge detection and the contouring analysis: (a) detected 

crack by Canny edge detection; and (b) detected crack by the contouring analysis. 

• Marching squares algorithm for contour detection 

In the proposed methodology, a popular and extensively used computer algorithm for boundary 
detection (i.e., marching squares [125-127]) is employed to extract crack contour candidates from 
the image surface. The marching squares algorithm gives a piece-wise approximation to the 
boundary of a 2D object. First, the image is represented by a grid of 2-by-2 pixel cells. This method 
analyzes the local properties of each cell, which has a finite set of cell configurations [126]. Then, 
the object can be enclosed by these cells through linear interpolation over the cell interval. 

The parameters in the marching squares algorithm are the contour levels. In this methodology, a 
single contour level is set based on the crack depth to be detected. In this study, the crack depth is 
determined as ℎ = −1 𝑚𝑚𝑚𝑚. In civil engineering practice, the crack depth to be detected can be 
determined by road survey companies or state transportation agencies. 
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It is worth noting that applying such a boundary detection algorithm alone will yield erroneous 
crack detection result, because: i) without a proper filtering process to remove the surface 
variations, the determination of the single contour level is dependent on the elevation of the image 
surface rather than the crack depth to be detected; and ii) additional logics and criteria are required 
to distinguish the crack contours from non-crack contours such as noise-induced small contours 
and  pothole contours. 

• Contour qualification and crack classification 

As illustrated in Figure 3-2, after the contours are extracted from the filtered image surface using 
the marching squares algorithm, a set of logics and criteria is developed in this methodology for 
crack detection and classification purpose. The detailed four-step procedure is explained as below: 

 
Figure 3-9. Different contour scenarios (the shaded areas indicate lower elevation than the contour level). 

i) Enclose the contours intersecting with image boundary 

The contours that have intersections with the image boundary will not be enclosed, as shown in 
Figure 3-9. Therefore, a criterion is developed to address this issue: if the starting and end contour 
points of a contour lie in the image boundary, then these two points are connected to produce an 
enclosed boundary. 

ii) Extract the contour properties 

The contour properties including area, perimeter, and centroid are calculated for further analysis. 

iii) Remove the contours with small area 

Despite the low-pass filtering process, a few remnant image noises still exist in the filtered range 
image. Such image noises might be detected as small contours, as shown in Figure 3-9. By using 



34 
 

Equation (3-8), the small contours due to image noises can be removed. In this equation, 𝐴𝐴𝑖𝑖 is the 
area of the 𝑖𝑖𝑡𝑡ℎ contour candidate, and 𝑡𝑡𝑡𝑡𝑙𝑙1 is the tolerance value for the smallest contour area. The 
value of 𝑡𝑡𝑡𝑡𝑙𝑙1is a tradeoff between computational efficiency and detection performance. In this 
study, the choice of 𝑡𝑡𝑡𝑡𝑙𝑙1 = 100 mm2, determined through experiments on a large set of range 
image data, successfully ensures the removal of the majority of noise-induced small contours, as 
can be illustrated through the subsequent experimental study. In practice, the tolerance value can 
be determined by road survey companies or state transportation agencies.  

 
Criterion 1: small contours are removed upon meeting this criterion  

𝐴𝐴𝑖𝑖 < 𝑡𝑡𝑡𝑡𝑙𝑙1 
(3-8) 

iv) Crack classification 

The crack classification is performed to distinguish the real cracks from those non-crack contours 
(Figure 3-9). Surface cracks usually have slender shapes; therefore, it is reasonable to distinguish 
the crack and non-crack contours based on this attribute. Equation (3-9) is proposed to disqualify 
the contours with non-slender shapes. In this equation, 𝑝𝑝𝑖𝑖 denotes the perimeter of the 𝑖𝑖𝑡𝑡ℎ contour.  

 

Criterion 2: Non-slender contours are removed upon meeting this criterion  

4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖2

> 𝑡𝑡𝑡𝑡𝑙𝑙2 
(3-9) 

Generally, the value of 4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2  in Equation (3-9) reduces as a contour becomes slenderer in shape. For 

example, if a rectangular-like contour has little width with respect to its height, then the value of 
4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2  becomes very small, and Equation (3-9)  will not hold. As a result, the corresponding contour 

will be identified as a real crack. For a square-shaped contour, 4𝐴𝐴𝑖𝑖
𝑝𝑝𝑖𝑖
2 =0.25; for a round-shaped 

contour which resembles a pothole (Figure 3-9), this value is equal to 1
𝜋𝜋
≈0.3. In this study, the 

threshold value 𝑡𝑡𝑡𝑡𝑙𝑙2 = 0.2, determined through experiments on a large set of range image data; 
and, this choice has enabled successful crack detection in the subsequent experimental study. In 
practice, this threshold value can also be determined by road survey companies or state 
transportation agencies. 

3.2 Deep Learning-Based Crack Classification 

3.2.1 Motivation 

Despite many successful developments of DCNN-based methods on crack detection as reviewed 
in section 2.2.2, some issues have yet to be properly addressed. One issue is related with the image 
data. Albeit the high adaptability of DCNN, directly applying this type of methods to realistic 
situations can still be very difficult, due to the high irregularity and complexity in the image data. 
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Therefore, it is common to employ image pre-processing to reduce the image complexity by noise 
removal and crack enhancement, as adopted by many DCNN-based methods [30,41,42]. However, 
it is more practical and preferable to directly learn from the raw data (possibly noise-contaminated) 
upon applying DCNN for crack detection to avoid additional human intervention. Moreover, 
typical non-crack patterns including grooves, pavement edges, and shoulder drop-offs can be 
misidentified as cracks due to their similarities, resulting in deterioration of the crack detection 
performance, as reported by [30]. Thus, it remains a challenge even for DCNN-based crack 
detection methods to reach consistent performance when directly using raw data with possible 
image contaminations. 

Another issue lies in the DCNN architecture. It is critical to determine the design configurations 
and training strategies for a crack classification DCNN architecture. For example, selection of the 
hyperparameters related with network structure (e.g., kernel size, network width and depth) and 
training (e.g., mini-batch size and learning rate) can impact the accuracy and efficiency of the 
DCNN architecture up to a significant extent. Faghih-Roohi, et al. [128] implemented three DCNN 
architectures (small, medium, and large in terms of network width and depth) with various 
combinations of hyperparameters for detection of defects on rail surfaces. They observed that the 
large model outperformed the rest by a margin of 0.5% on both the accuracy and F1 score [104], 
but it required a longer computational time. Pauly, et al. [129] evaluated the performance metrics 
by varying the network depth, and they showed that the network with a deeper architecture led to 
up to a 2% improvement on the detection accuracy. Tong, et al. [30] compared the classification 
performance on range image data between the CrackNet II and its three variants differing in the 
size of the kernels. The CrackNet II with smallest kernel sizes had a 20% higher F1 score than the 
one with the largest kernel sizes. They concluded that increasing kernel size resulted in worse 
performance.  

As to the selection of the hyperparameters for training, it has been reported that the process of 
configuring and choosing adequate hyperparameters is quite tedious, and no exact guidelines for 
those hyperparameter optimizations are available [39]. The design process of an ideal DCNN 
architecture for a task (i.e., crack classification in this context) must be conducted via 
experimentation guided by monitoring the validation set error [38]. Nevertheless, partially due to 
the lack of publicly available laser-scanned roadway range image datasets with high diversities 
(e.g., grooved patterns, various crack patterns), there is very few study discussing the impact from 
hyperparameter selection upon applying DCNN-based crack classification on this specific type of 
data. 

To address the above issues and promote a practical and robust solution for deep learning-based 
roadway crack classification on laser-scanned range images, the proposed methodology 
investigates the influence from hyperparameter selection through experiments on range image data 
of high diversity and irregularity. A series of DCNN classifiers with varying hyperparameter 
configurations in terms of their architecture layouts and training settings are developed and 
evaluated through quantitative measures. Among a family of 36 proposed DCNN classifiers, the 
optimal architecture that can best describe and reflect the complexity of the laser-scanned roadway 
images by achieving the highest classification performance is thus determined. The proposed 
classifier does not require any pre-processing on the raw range images, therefore it is robust against 
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image noises and non-crack patterns such as grooves, pavement edges, and shoulder drop-offs. 
The contribution of the proposed methodology is three-folded: 

i) A hyperparameter selection process is developed for DCNN-based roadway crack 
classification using laser-scanned range images. Consistent observations regarding the impact 
from hyperparameter selection are observed upon evaluating the DCNN performance on range 
image data of high complexities. And, the conclusions can provide prior knowledge for DCNN 
designs in similar applications using laser-scanned roadway range images; 

ii) The optimal architecture with associated training configuration determined through the 
hyperparameter selection process can achieve accurate and robust classification performance on 
different range image datasets with diverse patterns and image disturbances; 

iii) A laser-scanned roadway range image dataset (LRRD) [130] on asphalt and concrete 
pavements is collected and made publicly available to benefit the community. 

Thus, through this methodology, Challenge 5 (section 1.2) regarding the issue of hyperparameter 
selection can be properly tackled. Besides, as this proposed methodology directly exploits raw 
range image rather than filtered image data for analysis, it also addresses Challenges 2 and 3 by 
introducing robustness to the crack detection.  

3.2.2 Proposed Methodology 

• Proposed DCNN architecture 

One of the objectives in this study is to explore the impacts from varying hyperparameters on the 
network performance, and then determine the optimal hyperparameter configuration through a 
series of experiments. Thus, multiple DCNN architectures with different layouts/specifications are 
investigated. For example, the candidate shown in Figure 3-10 is a 7-layer architecture (No. 25 in 
Table 4-3) which is analyzed in the experimental cases. In this figure, L1 through L6 are 
convolutional blocks, and L7 is a fully connected layer; “BN” and “LReLU” in the convolutional 
blocks represent batch normalization layer and leaky rectified linear unit (LReLU) layer, 
respectively; “Dropout” refers to a dropout layer to prevent overfitting and improve generalization; 
“Softmax” corresponds to a softmax normalization layer. In this example, the convolutional blocks 
L1 through L5 use convolutional kernels with a stride of 2 for feature extraction; in L6, 1×1 
convolutional kernels with a stride of 1 are used for cross channel pooling. Zero paddings are 
assigned to produce output feature maps with a desired dimension. The definitions of these 
network layers can be found in section 2.3.1. The proposed DCNN classifier predicts the input raw 
range images as whether containing cracks or not. Detailed specifications on the network 
architecture are tabulated in Table 4-3. 
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Figure 3-10. A DCNN architecture candidate for performance evaluation. 

• Hyperparameter selection 

Hyperparameters in a neural network are the variables which are determined prior to training; in 
contrast, the parameters including weights and biases in a network are updated during training. 
The hyperparameters can be mainly categorized into two types: those related with network 
structure, and those related with training. This section describes the hyperparameters investigated 
in this study.  

i) Hyperparameters related with network structure 

Hyperparameters such as kernel size, stride, network width (i.e., number of kernels in each 
convolutional layer), and network depth (i.e., number of layers) determine the layout of a 
convolutional neural network. As explained in section 3.2.1, different configurations on these 
hyperparameters can vary the network performance to a significant level. For example, by 
increasing the network depth, a neural network can learn more complex features, but meanwhile 
it might be more compute-intensive and can potentially suffer from overfitting. Therefore, these 
hyperparameters need to be properly selected through experiments. In this methodology, an 
experimental study is designed to explore the impacts from three hyperparameters, which are 
kernel size, network width, and network depth. It has been reported in the literature [30,128,129] 
that these three hyperparameters have a notable influence on the network performance. Case I of 
the experimental study, which will be introduced later, compares the performance of different 
architectures with varying kernel sizes, network widths, and network depths. Based on the 
comparison, the optimal hyperparameter configuration that yields the most efficient and accurate 
classification performance is determined. 

ii) Hyperparameters related with training  

In this study, the mini-batch SGD with momentum algorithm, as described in section 2.3.4, is 
adopted as the optimization technique. Thus, several hyperparameters including weight decay 
factor, momentum, number of epochs, mini-batch size, learning rate and learning rate drop factor, 
dropout factor, and LReLU factor are involved in the training process. While no exact guidelines 
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are available for configuring and choosing these hyperparameters [39] for crack classification tasks, 
Case II of this experimental study focuses on investigating the optimal joint specification of the 
following hyperparameters: mini-batch size, learning rate, dropout factor, and LReLU factor. In 
Case II, to confine the discussion to these hyperparameters, the values of the other hyperparameters 
such as weight decay are fixed to be the same as used in other successful applications [30,39]. 

• Flow chart of the proposed DCNN-based crack classification methodology 

The flow chart of the proposed DCNN-based crack classification methodology which contains a 
two-step procedure (i.e., training and prediction) is illustrated in Figure 3-11. First, the proposed 
DCNN classifier is trained and validated on range image data; then, the trained classifier is utilized 
for crack classification on new datasets. By using the sliding window technique as introduced in 
section 2.3.2, the collected pavement image is cropped into many patches with smaller sizes, which 
reduces computational cost during training. Meanwhile, each cropped image patch carries not only 
the image feature but also location information. Once the image patches are predicted by the 
DCNN classifier, an inverse operation of the sliding window technique restores each patch to its 
original location, indicating the corresponding region as containing cracks or not. Thus, a crack 
map containing crack location information can be generated. 

 
Figure 3-11. Flow chart of the proposed crack detection methodology based on range images and DCNN. 

3.3 Deep Learning-Based Crack Segmentation 

3.3.1 Motivation 

As reported in section 2.2.2, a majority of current DCNN-based crack segmentation applications 
only used intensity images for training, thus their performance may potentially deteriorate due to 
disturbances in intensity image data such as shadows, uneven lighting condition [19], oil spills and 
blemishes [29,131]. 
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In the recent decade, researchers explored laser-scanned range image data for crack detection, 
relying on the elevation difference between cracks and non-crack regions to interpret the presence 
of cracks [19]. Zhang, et al. [42], Tong, et al. [30], and Fei, et al. [40] developed CrackNet and its 
variants, which are DCNNs trained and tested on laser-scanned range images, for roadway crack 
segmentation. However, while this type of image data has promising advantages over traditional 
intensity images such as being insensitive to changing illumination, it also suffers from issues 
including surface variations and non-crack patterns (e.g., grooves), which need to be properly 
addressed prior to crack detection [7,29]. In fact, due to these real-world complexities in range 
image data, most of the current DCNN-based crack segmentation methods [30,40,42] still employ 
image pre-processing (e.g., surface flattening, median filtering) on range images for crack 
enhancement. Besides, as stated in [30], issues due to non-crack patterns such as grooved patterns 
can deteriorate the segmentation performance, where the CrackNet II misidentified some grooves 
in concrete surfaces as cracks. The grooved pattern is a man-made pattern with a uniform depth, 
width, and shape on roadway surfaces to increase traction and resist sideways skidding. Because 
pavement grooves often possess similar features as cracks, such as width and depth, they can bring 
additional disturbances and uncertainties to image-based crack detection [29]. For current DCNN-
based crack segmentation methods using roadway range images, it remains a challenge to achieve 
consistent and robust segmentation performance under the contamination of grooves. 

A novel methodology is proposed based on encoder-decoder DCNNs for pixel-wise crack 
classification on roadway range images, under possible contamination of disturbances, such as 
surface variations and grooved patterns. Its contributions can be summarized in the following 
aspects: 

i) The proposed DCNN methodology utilizes range images for roadway crack segmentation, 
and it does not require any image pre-processing techniques to address the image issues including 
surface variations and pavement grooves; 

ii) A series of encoder-decoder networks are proposed and evaluated through a comparative 
study to investigate the impacts on crack segmentation performance; through the comparative 
study, the influence of residual connections on DCNN-based crack segmentation using roadway 
range images is demonstrated; 

iii) The optimal architecture determined in this study can achieve robust and consistent 
segmentation performance on laser-scanned roadway range images contaminated by image 
disturbances such as surface variations and grooved patterns. 

By achieving the above contributions by this DCNN-based crack segmentation methodology, the 
issues as described in Challenge 6 in section 1.2 can be properly addressed. 

3.3.2 Proposed Methodology 

A set of encoder-decoder networks with varying network depths and residual connections are 
proposed in this study for comparison. It is noted that, the impacts of residual connections (section 
2.3.5) on crack segmentation performance of DCNNs using laser-scanned roadway images, which 
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has not been thoroughly investigated in literature, are demonstrated and evaluated in the 
experimental section.  

Six encoder-decoder networks, denoted as Net-1 through 6, with gradually increased network 
depths, are proposed for crack segmentation. Meanwhile, the number of residual connections in 
these proposed encoder-decoder networks increases from 1 to 6, correspondingly.  

To isolate the influences from increasing network depth and from adding residual connections, an 
additional series of six “plain” counterparts (i.e., without residual connections) of Net-1 through 6 
are constructed for comparison. 

• Encoder-decoder networks with residual connections 

Six encoder-decoder networks with residual connections, denoted as Net-1 through 6, are proposed 
in this study. In Figure 3-12 which displays their basic layout, the red dashed box represents 
architecture-specific layers which are further illustrated in Figure 3-13 (a-f), respectively, for Net-
1 through 6. As shown in these two figures, the encoder consists of multiple convolutional blocks 
for feature extraction. Each convolutional block consists of a 2×2 max pooling layer with a stride 
of 2  for down-sampling, a 3×3 convolutional layer which adopts 3×3 kernels with a stride of 1 
and padding of 1 for feature extraction, a batch normalization layer to improve model 
generalization, and a LReLU layer to add nonlinearity. For each transposed convolutional block 
in the decoder, a 3×3 transposed convolutional layer utilizing 3×3 kernels with a stride of 2 and 
cropping of 1 is adopted for up-sampling, followed by a batch normalization and LReLU layer. 
The 1×1 convolutional layer performs cross-channel pooling to produce an output map of a desired 
depth. The softmax layer placed at the end produces a probability map for each input image. The 
output dimension is shown along with each layer. In each architecture displayed in Figure 3-12 
combined with Figure 3-13, low-level features extracted from the encoder are added to high-level 
features generated by the decoder through residual connections. These six architectures (Net-1 
through 6) have different model complexities, represented by the increased network depths and 
associated number of parameters as shown in Table 3-1. 
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Figure 3-12. Overall layout of the proposed DCNN architectures for semantic segmentation. 

Table 3-1. Detailed configurations of the proposed architectures. 

 
*: total number of the convolutional and transposed convolutional layers. 

Index Net 
name 

Network 
depth* 

Residual 
connection 

Number of residual 
connections 

Number of 
parameters (×106) 

1 Net-1 6 √ 1 0.45 
2 Net-2 8 √ 2 1.93 
3 Net-3 10 √ 3 7.84 
4 Net-4 12 √ 4 31.45 
5 Net-5 14 √ 5 88.10 
6 Net-6 16 √ 6 163.61 
7 Net-1A 6 × N/A 0.45 
8 Net-2A 8 × N/A 1.93 
9 Net-3A 10 × N/A 7.84 
10 Net-4A 12 × N/A 31.45 
11 Net-5A 14 × N/A 88.10 
12 Net-6A 16 × N/A 163.61 
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Figure 3-13. Hidden layers of the proposed architectures: (a-f) Net-1 through 6.
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• Encoder-decoder networks without residual connections 

In addition to Net-1 through 6, another six architectures denoted as Net-1A through 6A are 
constructed as their “plain” counterparts (see Table 3-1), which have the same layer configurations 
except they do not contain any residual connections. Thus, through a comparison between each 
network and its “plain” counterpart, the effect from residual connections on crack segmentation 
performance can be demonstrated. Figure 3-14 shows the architecture of Net-4A as an illustrative 
example. The detailed layer configuration for Net-4A is tabulated in Table 3-2. For concision, 
similar configuration information for the other architectures is not presented in this study. 

 
Figure 3-14. Net-4A: a counterpart of Net-4 (without residual connections). 
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Table 3-2. Detailed layer configuration of Net-4A. 

 
*: padding is performed on all boundaries; cropping is performed on bottom and right boundaries. 

**: INPUT: image input layer; MaxPool: max pooling layer; CONV: convolutional layer; BN: batch 
normalization layer; LReLU: leaky rectified linear unit; TransCONV: transposed convolutional layer; 
SOFTMAX: softmax normalization layer.

Layer 
name 

Layer 
type** 

Output 
dimension 

Kernel 
size 

Depth Stride Padding* Cropping* Learnable parameters 

Input INPUT 256×256×1 - - - - - -    
MP1 MaxPool 128×128×1 2×2 - 2 0 - -    
Conv1 CONV 128×128×128 3×3×1 128 1 1 - weight 3×3×1×128 bias 1×128 
BN1 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
LReLU1 LReLU 128×128×128 - - - - - -    
MP2 MaxPool 64×64×128 2×2 - 2 0 - -    
Conv2 CONV 64×64×256 3×3×128 256 1 1 - weight 3×3×128×256 bias 1×256 
BN2 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
LReLU2 LReLU 64×64×256 - - - - - -    

MP3 MaxPool 32×32×256 2×2 - 2 0 - -    
Conv3 CONV 32×32×512 3×3×256 512 1 1 - weight 3×3×256×512 bias 1×512 
BN3 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
LReLU3 LReLU 32×32×512 - - - - - -    
MP4 MaxPool 16×16×512 2×2 - 2 0 - -    
Conv4 CONV 16×16×1024 3×3×512 1024 1 1 - weight 3×3×512×1024 bias 1×1024 
BN4 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
LReLU4 LReLU 16×16×1024 - - - - - -    
MP5 MaxPool 8×8×1024 2×2 - 2 0 - -    
Conv5 CONV 8×8×2048 3×3×1024 2048 1 1 - weight 3×3×1024×2048 bias 1×2048 
BN5 BN 8×8×2048 - - - - - scale 1×2048 shift 1×2048 
LReLU5 LReLU 8×8×2048 - - - - - -    

1×1Conv1 CONV 8×8×2 1×1×2048 2 1 0 - weight 1×1×2048×2 bias 1×2 
TConv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024 
BN6 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
LReLU6 LReLU 16×16×1024 - - - - - -    
TConv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512 
BN7 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
LReLU7 LReLU 32×32×512 - - - - - -    

TConv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256 
BN8 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
LReLU8 LReLU 64×64×256 - - - - - -    
TConv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128 
BN9 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
LReLU9 LReLU 128×128×128 - - - - - -    
TConv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128 
BN10 BN 256×256×128 - - - - - scale 1×128 shift 1×128 
LReLU10 LReLU 256×256×128 - - - - - -    

1×1Conv2 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2 
Softmax SOFTMAX 256×256×2 - - - - - -    

        Sum 31450116 
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• Flow chart of the proposed DCNN-based crack segmentation methodology 

Figure 3-15 illustrates the flow chart of the DCNN-based crack segmentation methodology 
proposed in this study, which is comprised of two phases: i) DCNN training; and ii) DCNN 
prediction. In DCNN training, first, range images are acquired from roadways; then, image patches 
with a dimension of 256×256 pixels are produced through the sliding window technique (section 
2.3.2); ground truth labels are generated for the image patches containing cracks; finally, the 
cracked image patches with their ground truth labels are augmented and then utilized for DCNN 
training. Once the DCNN is trained, it can be used in the second phase, which is DCNN prediction. 
During prediction, new image data is acquired from roadway surfaces, cropped into patches using 
the sliding window technique; then, crack maps with pixel-wise resolution are generated by the 
DCNN for the image patches; finally, through an inverse operation of the sliding window 
technique, a crack map for the roadway image is reconstructed. 

 
Figure 3-15. Flow chart of the proposed DCNN-based crack segmentation methodology. 

  



46 
 

3.4 Deep Learning-Based Data Fusion for Crack Detection 

3.4.1 Motivation 

As reviewed in section 2.2.2, current DCNN-based crack segmentation methods either used 
intensity or range image for analysis. Depending on the image type, crack detection methodologies 
may suffer from issues such as uneven illumination and low contrast in intensity images or surface 
variations and grooved patterns in range images. For example, as observed in [30], grooved 
patterns in concrete pavements resulted in false-positive detections. Besides, to resolve the 
disturbances existing in either type of image data, image pre-processing techniques such as 
background correction [41], line filtering [42], surface flattening [30], and median filtering [40] 
are adopted prior to DCNN training and testing. However, in practice, it is often unclear about the 
appropriate choices of the parameters associated with the pre-processing procedure; furthermore, 
certain level of expertise or prior knowledge is often required upon designing a pre-processing 
procedure, leading to a scenario where the effect of pre-processing may be user-dependent. 
Therefore, despite the wide applicability of DCNN-based methodologies, uncertainties or 
subjectivities due to parameter selection may still arise. For example, as reported in [40], it is 
difficult to determine the optimal kernel size of the median filter to eliminate the surface variations 
in the range image.  

Instead of relying on image pre-processing techniques, which may bring uncertainties or 
subjectivities, the methodology proposed in this study explores the feasibility of fusing the raw 
intensity and range image to alleviate the image-related issues through cross-domain feature 
correlation. Data fusion is a terminology in informatics, referring to a process to obtain more 
comprehensive information and reduce uncertainty by integrating multiple data sources instead of 
considering each data source separately [43,132]. Such a fusion process can be applied to multiple 
data sources based upon a single type of data (i.e., homogeneous data fusion), or upon different 
types of data (i.e., heterogeneous data fusion) [43-45,133]. In the context of image-based crack 
detection, several applications using homogeneous data fusion such as [134,135] were reported in 
literature. However, the combined information from homogeneous data sources may still carry the 
issue existing in the same type of data [45]. For example, by fusing the intensity image data, which 
may suffer from uneven illumination, the fused image data may still reproduce the issue incurred 
by uneven illumination. Thus, it is preferable in practical situations to leverage heterogeneous data 
fusion to incorporate data of diverse characteristics and further reduce the uncertainty existing in 
each type of data [45,132,133]. In a study on near-surface crack detection, Heideklang and 
Shokouhi [136] applied heterogeneous data fusion to integrate information from three types of 
data to improve the detection performance. However, their method is not DCNN-based, and hence 
may have difficulties adapting to data with real-world complexities. Beckman, et al. [137] 
proposed a method using region-based DCNN and two types of data for concrete spalling detection. 
In their study, the DCNN architecture considers only one type of data sources—the intensity image 
data, while the other type of data (i.e., depth information through a depth sensor) is not 
incorporated into the architecture of the DCNN. Overall, in the existing literature on DCNN-based 
roadway crack segmentation, the feasibility and strategy of applying heterogeneous image fusion 
have yet to be investigated; besides, the effects from different types of image data on DCNN 
segmentation remain to be discovered and demonstrated. 
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In this study, the laser imaging system as introduced in section 2.4 is utilized to collect both 
intensity and range images with spatial correlation for analysis. Two novel DCNN-based 
methodologies with heterogeneous image data fusion for roadway crack classification (section 
3.4.3) and segmentation (section 3.4.4), respectively, are proposed. The contributions are: 

i) A novel heterogeneous image data fusion approach is proposed, by integrating the range 
and intensity image data based on the concept of hyperspectral imaging to offer robust crack 
detection performance; 

ii) A series of new DCNNs, representing different strategies to exploit fused raw image data, 
are developed and compared for crack classification and segmentation tasks, respectively; 

iii) To evaluate the impact on crack detection from heterogeneous image data, four types of 
data including raw range, raw intensity, filtered range (obtained through image pre-processing), 
and fused raw image are trained and tested on baseline DCNN architectures for comparison; 
additionally, based on the experimental analysis, findings related to the use of image pre-
processing are provided. 

Through the proposed methodologies with the associated image fusion strategies for crack 
classification and segmentation tasks, Challenge 7 (section 1.2) which is related with 
heterogeneous image data is addressed. 

3.4.2 Heterogeneous Image Data 

Four different types of image data are considered in this study, which are raw intensity, raw range, 
filtered range, and fused raw image. The characteristics of each type of image data are introduced 
in this section. 

• Raw intensity image 

Intensity image is used by many image-based techniques [6] for crack detection. The general 
assumption upon using the intensity image is that cracked regions have lower intensity values (i.e., 
darker) than non-crack regions. Thus, under the situation of changing illumination condition or 
low intensity contrast between crack and non-crack regions, the performance of intensity-based 
crack detection may deteriorate [19]. Moreover, image disturbances such as shadows, blemishes, 
and oil stains which also have low intensity values may add difficulty and uncertainty to crack 
detection on intensity images [19,131]. As an example, the intensity and range data of ten image 
samples are illustrated in Figure 3-16 to demonstrate the issue of low contrast in intensity images. 
In Figure 3-16, surface cracks can be clearly observed in the range image data; however, due to 
low intensity contrast between the cracks and non-crack regions, the cracks are not noticeable in 
the corresponding intensity images. Based on the cracks with low intensity contrast identified 
through this study, their intensity contrast is usually lower than 30 (pixel intensity ranges from 
0~255). 
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Figure 3-16. Cracks that are apparent in range images but not noticeable in intensity images. 

• Raw range image 

With the development of laser imaging technology, range image has been adopted by some 
researchers [29-31,40,42] for surface crack detection. Range-based methods generally rely on the 
elevation difference in cracked regions to interpret the crack presence. Laser-scanned range images 
are insensitive to changing illumination condition, and noises such as oil stains and blemishes will 
not interfere with crack detection on range images [19]. Nevertheless, despite its advantages over 
intensity images, the range images also have issues such as being sensitive to surface variations 
and non-crack patterns such as pavement grooves. Moreover, it may be challenging for range-
based methods to detect shallow cracks [29,31]. The shallow cracks referred in this study are 
structural cracks which are difficult to be distinguished in the range data. Based on the shallow 
cracks identified through this study, the change of elevation is usually under 0.5 mm. Although 
shallow cracks do not pose a major threat to the health condition of the infrastructure, they can 
reveal the trend of crack evolution and provide necessary information (e.g., location) to promote 
precautionary measures. Therefore, accurate detection of the shallow cracks is of importance to 
the health monitoring and condition assessment of the infrastructure. 

• Filtered range image 

This study utilizes the filter-based technique [29] proposed in section 3.1 to generate filtered range 
images, addressing the issues of surface variations and grooved patterns in range image. An 
example of applying this technique for image pre-processing is illustrated in Figure 3-17. The raw 
range and filtered range image of a roadway surface are displayed in Figure 3-17 (a) and (b), 
respectively. As can be observed in this figure, the surface variations and grooved patterns are 
effectively eliminated from the range image surface, while the cracking features are preserved. In 
this study, through a comparison on the segmentation performance by the same DCNN trained and 
tested on raw range vs. filtered range image, the effect of image pre-processing can be 
demonstrated. Meanwhile, it is noted that, although the use of filtered range images may avoid 
disturbances such as surface variations and grooved patterns, the uncertainties or subjectivities due 
to image pre-processing cannot be completely avoided. Therefore, it is preferable to directly utilize 
raw image data for training and testing to improve the robustness of DCNNs against real-world 
complexities. 
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Figure 3-17. An example of image pre-processing: (a) raw range image; (b) filtered range image; and (c) 

zoomed-in views. 

• Data fusion to combine raw intensity and range image 

This study investigates the feasibility of directly combining the information in the raw intensity 
and range image to alleviate issues existing in each type of data. For example, it may occur that 
cracks of low contrast in intensity images may be more detectable in the corresponding range 
images; and, in range images, cracks which have shallow depths may be more apparent in the 
corresponding intensity data. Thus, the use of fused raw image data can provide complementary 
and more comprehensive information through cross-domain feature correlation and extraction, 
which may alleviate the issues in individual source of data. 

A heterogeneous data fusion strategy is proposed in this study for DCNN-based roadway crack 
classification and segmentation. As described in section 3.4.1, heterogeneous data fusion is a 
process to obtain more comprehensive information and reduce uncertainty by integrating multiple 
sources of data with diverse characteristics instead of examining individual data source [43,132]. 
In this study, the acquired raw intensity and range images with spatial correspondence are directly 
fused at data level, by leveraging the concept of hyperspectral imaging [138]. Hyperspectral 
images have multiple channels with an image component in each channel corresponding to a 
specific spectral band. In like manner, the raw intensity and range image data can be integrated as 
hyperspectral imaging. Figure 3-18 illustrates an example of the fused raw image data acquired 
for crack segmentation, where the channel 1-3 of the hyperspectral image are the RGB channels 
of a raw range image (dimension: 256×256×3), and the channel 4-6 are the RGB channels of a raw 
intensity image (dimension: 256×256×3). It is noted that the range and intensity image data is 
converted into 24-bit RGB image data format during data acquisition. As highlighted in Figure 
3-18, the “spatial co-registration” feature is generated through data fusion based on the fact that 
the intensity and range image data have pixel-to-pixel location correspondence, which is enabled 
by the 3D laser imaging system (section 2.4). Thus, such features can be exploited to address issues 
existing in individual data source and facilitate DCNN-based crack segmentation through cross-
domain feature correlation and extraction. 
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Figure 3-18. An illustration of the fused raw image data. 

3.4.3 Proposed Methodology for Crack Classification 

It is noteworthy that the acquired intensity or range image data used for crack classification by this 
proposed methodology is 8-bit single-channel data, with the dimension as 256×256×1. Meanwhile, 
the intensity or range image data used later for crack segmentation is 24-bit three-channel RGB 
data with a higher resolution, which has the dimension as 256×256×3. Still, the basic concept on 
the proposed data fusion strategy as illustrated in Figure 3-18 is the same, regardless of the 
difference in the channel depth of the acquired image data. 

In this section, a total of three DCNN architectures are proposed for different tasks. Net-A is 
designed to take single-channel image input including raw intensity images, raw range images, 
and filtered range images. Then, Net-B is modified from Net-A by changing the input layer and 
the first convolutional layer, such that it can utilize fused raw image data for analysis. In addition, 
another DCNN architecture, Net-C, is proposed as a different layout than Net-B to be trained and 
tested on the fused raw image data. The proposed architectures include convolutional layers, fully 
connected layers, and auxiliary layers such as batch normalization, leaky rectified linear unit 
(LReLU), dropout, and softmax layers, which are introduced in section 2.3.1. It is worth noting 
that upon designing these architectures, the total number of learnable parameters (see Table 3-5) 
among these architectures is kept similar to each other, as a means to balance the model complexity 
for comparison purposes. 
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• Net-A: a DCNN architecture for single-channel image input 

The architecture of Net-A is illustrated in Figure 3-19, with its detailed configuration on each layer 
tabulated in Table 3-3. This DCNN is a deep architecture which takes single-channel image 
patches as the input and predicts the images as containing cracks or not.  

• Net-B and Net-C: DCNN architectures for dual-channel image input 

Two architectures, namely Net-B and Net-C, are configured for fused raw image data. These 
architectures are designed to have completely different layouts: Net-B directly extracts the spatial 
co-registration feature in the fused raw image data at a lower level; On the contrary, Net-C first 
separates the intensity and range information from the input, then performs individual feature 
extraction and finally merges the extracted features from the intensity or range data at a higher 
level. 

i) Net-B: data fusion at input layer 

Having a similar architecture as Net-A, Net-B employs a straightforward yet very intuitive 
approach to take advantage of the fused raw image data; that is, to modify the kernel sizes of the 
first convolutional layer (“Conv1” in Table 3-3) from 3×3×1 to 3×3×2 to directly convolve with 
the dual-channel image input. The detailed layer configuration of Net-B is also tabulated in Table 
3-3. The layout of Net-B is illustrated in Figure 3-20. Such a configuration allows to exploit the 
spatial co-registration features existing in the fused raw image data through the first convolutional 
layer. Induced by changes in the filter kernels, the total number of parameters is slightly increased 
from 215572 (Net-A) to 215716 (Net-B).
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Figure 3-19. Net-A: Proposed DCNN architecture with single-channel image input. 

 
Figure 3-20. Net-B: Proposed DCNN architecture with dual-channel image input. 

 
Figure 3-21. Net-C: Proposed DCNN architecture with dual-channel image input. 
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Table 3-3. Detailed configuration of Net-A and Net-B. 

 
*: the underlined numbers are associated with Net-A, and those in parentheses with Net-B.

Layer 
name 

Layer type Output 
dimension 

Kernel 
size 

Depth Stride Padding Learnable parameters 

Input  256×256×1(2)* - - - - -    
Conv1 convolution 128×128×16 3×3×1(2) 16 2 1 weight 3×3×1(2)×16 bias 1×16 
BN1 batch 

normalization 
128×128×16 - - - - scale 1×16 shift 1×16 

LReLU1 leaky 
rectified 
linear unit 

128×128×16 - - - - -    

Conv2 convolution 64×64×32 7×7×16 32 2 3 weight 7×7×16×32 bias 1×32 
BN2 batch 

normalization 
64×64×32 - - - - scale 1×32 shift 1×32 

LReLU2 leaky 
rectified 
linear unit 

64×64×32 - - - - -    

Conv3 convolution 32×32×48 11×11×32 48 2 5 weight 11×11×32×48 bias 1×48 
BN3 batch 

normalization 
32×32×48 - - - - scale 1×48 shift 1×48 

LReLU3 leaky 
rectified 
linear unit 

32×32×48 - - - - -    

Dropout1 drop out 32×32×48 - - - - -    

Conv4 convolution 32×32×2 1×1×48 2 1 0 weight 1×1×48×2 bias 1×2 
FC1 full 

connection 
1×2 - - - - weight 32×32×2×2 bias 1×2 

Softmax softmax 
normalization 

1×2 - - - - - -   

       Sum 215572(215716) 
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ii) Net-C: data fusion at concatenation layer 

Different than Net-B, Net-C is designed to perform individual feature extraction on the intensity 
or range data separated from the fused raw image input, as illustrated in Figure 3-21. The detailed 
layer configuration is tabulated in Table 3-4. Separation on the input data is achieved by 
convolving the fused raw image input with a fixed-weight 1×1 convolutional layer, which acts like 
a channel switch. After feature extraction on separate channels, the high-level information is 
merged through a depth concatenation layer, labeled as “Concat1” in Figure 3-21 and Table 3-4. 
The major difference between Net-B and Net-C lies in that Net-B fuses image information at a 
lower level through a convolutional layer, referred to as a “fuse-extract” pattern; Net-C, however, 
fuses features extracted from separate image channels at a higher level through a concatenation 
(i.e., fusion) layer, which can be referred to as a “extract-fuse” pattern. As demonstrated in Case 
II, different patterns on the data fusion and feature extraction govern the network performance. 

As mentioned previously, these DCNN architectures are designed such that they contain similar 
amounts of learnable parameters, as indicated in Table 3-5. With all three architectures sharing the 
similar level of model complexity as reflected by the number of parameters, the major impact 
factors on the network performance thus originate from different types of image data and the 
associated architecture layouts. 

• Flow chart of the proposed DCNN-based crack classification methodology with 
heterogeneous image fusion 

The flow chart of the proposed DCNN-based crack classification methodology based on 
heterogeneous image fusion is illustrated in Figure 3-22. As shown in this figure, the first step is 
to obtain raw range and intensity image data by using the laser imaging system (section 2.4). 
Second, the proposed heterogeneous image fusion approach (section 3.4.2) is employed to 
integrate the raw range and intensity data. Then, the fused raw image is processed through a data 
generation process, including image patch generation through the sliding window technique 
(section 2.3.2), ground truth label (i.e., “crack” vs. “non-crack”) generation, data augmentation, 
and training/validation datasets generation. The next two steps are to train the proposed DCNN 
architectures on the fused image data and then utilize the trained DCNNs to predict a crack map 
on a new roadway image data. 
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Figure 3-22. Flow chart of the proposed DCNN-based crack classification methodology with heterogeneous 

image fusion. 

Note that the flow chart as shown in Figure 3-22 refers to the crack classification tasks based on 
heterogeneous image fusion. For DCNN-based crack segmentation tasks with heterogeneous 
image fusion, which will be introduced in section 3.4.4, they share the same flow chart except that 
the DCNNs are developed for segmentation instead of classification. 



56 
 

Table 3-4. Detailed configuration of Net-C. 

 
 

Table 3-5. Number of parameters of the proposed architectures. 

 

Layer 
name 

Layer type Output 
dimension 

Kernel 
size 

Depth Stride Padding Learnable parameters 

Input  256×256×2 - - - - -    
Conv1 convolution 128×128×16 3×3×1 16 2 1 weight 3×3×1×16 bias 1×16 
BN1 batch 

normalization 
128×128×16 - - - - scale 1×16 shift 1×16 

LReLU1 leaky rectified 
linear unit 

128×128×16 - - - - -    

Conv2 convolution 64×64×16 7×7×16 16 2 3 weight 7×7×16×16 bias 1×16 
BN2 batch 

normalization 
64×64×16 - - - - scale 1×16 shift 1×16 

LReLU2 leaky rectified 
linear unit 

64×64×16 - - - - -    

Conv3 convolution 32×32×48 11×11×16 48 2 5 weight 11×11×16×48 bias 1×48 
BN3 batch 

normalization 
32×32×48 - - - - scale 1×48 shift 1×48 

LReLU3 leaky rectified 
linear unit 

32×32×48 - - - - -    

Conv4 convolution 128×128×16 3×3×1 16 2 1 weight 3×3×1×16 bias 1×16 
BN4 batch 

normalization 
128×128×16 - - - - scale 1×16 shift 1×16 

LReLU4 leaky rectified 
linear unit 

128×128×16 - - - - -    

Conv5 convolution 64×64×16 7×7×16 16 2 3 weight 7×7×16×16 bias 1×16 
BN5 batch 

normalization 
64×64×16 - - - - scale 1×16 shift 1×16 

LReLU5 leaky rectified 
linear unit 

64×64×16 - - - - -    

Conv6 convolution 32×32×48 11×11×16 48 2 5 weight 11×11×16×48 bias 1×48 
BN6 batch 

normalization 
32×32×48 - - - - scale 1×48 shift 1×48 

LReLU6 leaky rectified 
linear unit 

32×32×48 - - - - -    

Concat1 concatenation 32×32×96 - - - - -    
Dropout1 drop out 32×32×96 - - - - -    
Conv7 convolution 32×32×2 1×1×96 2 1 0 weight 1×1×96×2 bias 1×2 
FC1 full 

connection 
1×2 - - - - weight 32×32×2×2 bias 1×2 

Softmax softmax 
normalization 

1×2 - - - - - -   

       Sum 216004 

 

Architecture Data type Number of 
parameters 

Net-A raw intensity, 
raw range, 
filtered range 

215572 

Net-B fused raw image 215716 
Net-C fused raw image 216004 
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3.4.4 Proposed Methodology for Crack Segmentation 

As explained previously, the intensity or range image data acquired for crack segmentation is 24-
bit three-channel RGB data with the dimension as 256×256×3, which has a higher resolution than 
the image data used for crack classification (i.e., 8-bit single-channel image data). 

Three encoder-decoder networks, denoted as Net-1, 2, and 3, are proposed in this study to exploit 
heterogeneous image data. It is noteworthy that these architectures are designed such that they 
consume similar amounts of parameters indicating their similar model complexity. 

• Net-1: An encoder-decoder network for a single type of image data 

Figure 3-23 illustrates the layout of Net-1, an encoder-decoder network designed to take a single 
type of image data, such as raw intensity, raw range, or filtered range image. As displayed in Figure 
3-23, the encoder of Net-1 contains five convolutional blocks. Each convolutional block consists 
of a convolutional layer using multiple 3×3 kernels with a stride of 2 for feature extraction, a batch 
normalization layer to improve generalization, and a LReLU layer to provide nonlinearity. After 
feature extraction through the encoder, a convolutional layer with 1×1 kernels is utilized for cross-
channel pooling. Subsequently, in the decoder, five transposed convolutional blocks are adopted. 
Each transposed convolutional block consists of a transposed convolutional layer for feature up-
sampling, and auxiliary layers including batch normalization and LReLU. At the end of the 
decoder, a convolutional layer is utilized for cross-channel pooling on the expanded feature maps; 
and, the output is normalized by a softmax layer to generate a crack probability map. Detailed 
architecture configuration is tabulated in Table 3-6.  

It is noted that the convolutional and transposed convolutional blocks are connected through 
residual connections, as illustrated in Figure 3-23. Accordingly to [82,101], adding residual 
connections in a deep architecture can help prevent performance degradation and avoid data 
singularity. In this study, low-level features extracted by the convolutional blocks in the encoder 
are merged with the high-level feature output of the transposed convolutional blocks in the decoder 
through an arithmetic addition operation.
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Figure 3-23. Net-1: An encoder-decoder network to take a single type of image data. 
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Table 3-6. Layer configurations of Net-1 and Net-2. 

 
*: The numbers in parentheses are associated with Net-2. 

**: INPUT: image input layer; CONV: convolutional layer; BN: batch normalization layer; LReLU: leaky rectified linear unit; TransCONV: 
transposed convolutional layer; SOFTMAX: softmax normalization layer. 

Layer 
name 

Layer 
type** 

Output 
dimension 

Kernel 
size 

Depth Stride Padding Cropping Learnable parameters 

Input INPUT 256×256×3(6)* - - - - - -    
Conv1 CONV 128×128×128 3×3×3(6) 128 2 1 - weight 3×3×3(6)×128 bias 1×128 
 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
 LReLU 128×128×128 - - - - - -    
Conv2 CONV 64×64×256 3×3×128 256 2 1 - weight 3×3×128×256 bias 1×256 
 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
 LReLU 64×64×256 - - - - - -    
Conv3 CONV 32×32×512 3×3×256 512 2 1 - weight 3×3×256×512 bias 1×512 
 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
 LReLU 32×32×512 - - - - - -    
Conv4 CONV 16×16×1024 3×3×512 1024 2 1 - weight 3×3×512×1024 bias 1×1024 
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
 LReLU 16×16×1024 - - - - - -    
Conv5 CONV 8×8×1024 3×3×1024 1024 2 1 - weight 3×3×1024×1024 bias 1×1024 
 BN 8×8×1024 - - - - - scale 1×1024 shift 1×1024 
 LReLU 8×8×1024 - - - - - -    
1×1Conv1 CONV 8×8×2 1×1×1024 2 1 0 - weight 1×1×1024×2 bias 1×2 
Tconv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024 
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
 LReLU 16×16×1024 - - - - - -    
Tconv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512 
 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
 LReLU 32×32×512 - - - - - -    
Tconv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256 
 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
 LReLU 64×64×256 - - - - - -    
Tconv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128 
 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
 LReLU 128×128×128 - - - - - -    
Tconv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128 
 BN 256×256×128 - - - - - scale 1×128 shift 1×128 
 LReLU 256×256×128 - - - - - -    
1×1Conv2 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2 
Softmax SOFTMAX 1×2 - - - - - -    
        Sum 22010116 (22013572) 
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• Net-2 and Net-3: Encoder-decoder networks for fused raw image data 

Two encoder-decoder networks, Net-2 and 3, are developed for fused raw image data. The major 
difference is that Net-2 directly exploits the fused raw image data containing spatial co-registration 
features through a convolution operation, which can be referred to as a “fuse-extract” pattern; Net-
3, which has a two-stream encoder layout, performs feature extraction on separate image data, and 
then fuse the high-level features through an addition operation, which can be considered as an 
“extract-fuse” pattern. Net-2 and 3 have the same decoder layout, hence the influencing factor on 
their segmentation performance stems from different strategies to exploit the fused raw image data 
and the associated encoder layouts. 

i) Net-2: An encoder-decoder network with a “fuse-extract” pattern 

Net-2 represents a straightforward and intuitive approach by modifying the input layer of a DCNN 
to exploit the fused raw image data. As illustrated in Figure 3-24, the layout of Net-2 is the same 
as that of Net-1 except the image input layer, where the input for Net-2 contains 6 channels 
comprised of raw range and intensity data. The layer configuration of Net-2 is also tabulated in 
Table 3-6. Due to the change of input dimension, the kernel sizes in the first convolutional layer 
(see “Conv1” in Table 3-6) are changed accordingly. And, the total number of parameters is 
increased from 22010116 (Net-1) to 22013572 (Net-2).  

ii) Net-3: An encoder-decoder network with an “extract-fuse” pattern 

As illustrated in Figure 3-25, the encoder of Net-3 contains two streams, one for the raw range 
image component, the other for the raw intensity image component. In the encoder, feature 
extraction is performed separately on the raw range or intensity image data. The extracted features 
in each stream are then fused through an addition layer (“Add1” in Figure 3-25 and Table 3-7), 
which performs an arithmetic addition operation. Such a fusion strategy can be considered as an 
“extract-fuse” pattern, different than the “fuse-extract” pattern adopted in Net-2. Regarding the 
decoder, Net-3 utilizes the same decoder module as Net-1 and 2 for feature map expansion. 
Meanwhile, residual connections are employed to merge the low-level features from both streams 
in the encoder with the high-level features in the decoder. The layer configuration is tabulated in 
Table 3-7. It is noted that, the total number of parameters of Net-3 (23491334) is similar to that of 
Net-2 (22013572), implying very similar model complexity. Then, the difference in segmentation 
performance on the fused raw image data is solely induced by the different encoder modules.  
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Figure 3-24. Net-2: An encoder-decoder network to take fused raw image data. 
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Figure 3-25. Net-3: A two-stream encoder-decoder network to take fused raw image data. 
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Table 3-7. Layer configuration of Net-3. 

 
*: same as defined in Table 3-6.

Layer name Layer type* Output 
dimension 

Kernel 
size 

Depth Stride Padding Cropping Learnable parameters 

Input INPUT 256×256×6 - - - - - -    
Conv1 
/Conv6 

CONV 128×128×128 3×3×3 128 2 1 - weight 3×3×3×128 bias 1×128 

 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
 LReLU 128×128×128 - - - - - -    
Conv2 
/Conv7 

CONV 64×64×256 3×3×128 256 2 1 - weight 3×3×128×256 bias 1×256 

 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
 LReLU 64×64×256 - - - - - -    
Conv3 
/Conv8 

CONV 32×32×512 3×3×256 512 2 1 - weight 3×3×256×512 bias 1×512 

 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
 LReLU 32×32×512 - - - - - -    
Conv4 
/Conv9 

CONV 16×16×1024 3×3×512 1024 2 1 - weight 3×3×512×1024 bias 1×1024 

 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
 LReLU 16×16×1024 - - - - - -    
Conv5 
/Conv10 

CONV 8×8×256 3×3×1024 256 2 1 - weight 3×3×1024×256 bias 1×256 

 BN 8×8×256 - - - - - scale 1×256 shift 1×256 
 LReLU 8×8×256 - - - - - -    
1×1Conv1 
/1×1Conv2 

CONV 8×8×2 1×1×256 2 1 0 - weight 1×1×256×2 bias 1×2 

Add1 Addition layer 8×8×2 - - - - - -    
Tconv1 TransCONV 16×16×1024 3×3×2 1024 2 - 1 weight 3×3×2×1024 bias 1×1024 
 BN 16×16×1024 - - - - - scale 1×1024 shift 1×1024 
 LReLU 16×16×1024 - - - - - -    
Tconv2 TransCONV 32×32×512 3×3×1024 512 2 - 1 weight 3×3×1024×512 bias 1×512 
 BN 32×32×512 - - - - - scale 1×512 shift 1×512 
 LReLU 32×32×512 - - - - - -    
Tconv3 TransCONV 64×64×256 3×3×512 256 2 - 1 weight 3×3×512×256 bias 1×256 
 BN 64×64×256 - - - - - scale 1×256 shift 1×256 
 LReLU 64×64×256 - - - - - -    
Tconv4 TransCONV 128×128×128 3×3×256 128 2 - 1 weight 3×3×256×128 bias 1×128 
 BN 128×128×128 - - - - - scale 1×128 shift 1×128 
 LReLU 128×128×128 - - - - - -    
Tconv5 TransCONV 256×256×128 3×3×128 128 2 - 1 weight 3×3×128×128 bias 1×128 
 BN 256×256×128 - - - - - scale 1×128 shift 1×128 
 LReLU 256×256×128 - - - - - -    
1×1Conv3 CONV 256×256×2 1×1×128 2 1 0 - weight 1×1×128×2 bias 1×2 
Softmax SOFTMAX 1×2 - - - - - -    
        Sum 23491334 
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CHAPTER 4: EXPERIMENTAL STUDY AND RESULTS 

The proposed crack detection methodologies are applied to image data of real-world complexities. 
And, the corresponding experimental results and discussions are presented in this chapter.  

4.1 Image Processing Technique for Robust Crack Detection Using Range Image Data 

This section presents an experimental study of applying the proposed crack detection methodology 
on bridge deck surfaces. The intensity and range image data of a bridge deck are acquired by the 
laser imaging system as introduced in section 2.4. The range data has the resolution of 𝑝𝑝𝑢𝑢 = 2 
mm/pixel and 𝑝𝑝𝑣𝑣 = 1 mm/pixel along longitudinal and transverse direction, respectively. Three 
images containing cracks with different noise level, average elevation, and crack pattern, are 
selected from the data for illustration purpose. The same frequency domain filters are applied to 
the three bridge deck range images, and the results of image filtering are demonstrated in section 
4.1.1. The next section 4.1.2 shows the crack detection results on the filtered surfaces using the 
contouring analysis. Then, in section 4.1.3, the accuracy of the proposed crack detection 
methodology is demonstrated through a precision-recall analysis. The limitation of the proposed 
technique is summarized in section 4.1.4. 

4.1.1 Image Pre-Processing using Frequency Domain Filtering 

Prior to detecting cracks, image pre-processing is conducted to reduce the influence from grooved 
patterns and surface variations (Figure 3-1) such as ripples and rutting, and meanwhile suppress 
the image noises. During the pre-processing, three filtering processes are performed sequentially. 
First, a high-pass filtering is applied to the bridge deck range data, to remove surface variations; 
then, a low-pass filtering is performed on the high-pass filtered surface for noise suppression; 
finally, a multiple notch filtering is conducted to remove grooved patterns in the surface.  

 
Figure 4-1. Intensity images of bridge deck surfaces: (a) Surface 1; (b) Surface 2; and (c) Surface 3. 

The intensity images and range images of the bridge deck surfaces are shown in Figure 4-1 and 
Figure 4-2 (a-c), respectively. In both figures, the horizontal axis indicates the longitudinal vehicle 
driving direction. In Surface 1 [Figure 4-1 (a) and Figure 4-2 (a)], both longitudinal grooved 
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patterns and thin cracks propagating along the transverse direction exist; Surface 2 [Figure 4-1 (b) 
and Figure 4-2 (b)] does not have grooves, but contains a punchout cracking pattern; in Surface 3 
[Figure 4-1 (c) and Figure 4-2 (c)], a corner break cracking pattern can be observed. Figure 4-1 (a-
c) show the conventional intensity images, and Figure 4-2 (a-c) illustrate the original range 
surfaces. In all three range images, the color scale is associated with surface elevation. Judging 
from the color change, significant surface variations can be observed, especially in Surface 2. 

 
Figure 4-2. Original range surfaces and the high-pass filtering result: (a-c) the original range Surface 1, 2, and 

3; and (d-f) the high-pass filtered range Surface 1, 2, and 3. 
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• High-pass filtering result 

A Gaussian high-pass filter is applied to the original range surfaces to remove surface variations. 
The maximum crack width to be detected is selected as 200 mm—a threshold smaller than 200 
mm can also be chosen, but a larger maximum crack width is generally considered as a more 
challenging case as more cracks are preserved in the analysis. Then, based on the relationship 
between the width of a crack and its frequency domain information derived in section 3.1.4, the 
high-pass cutoff frequency is equal to 1

200
 cycle/mm. The corresponding high-pass filtering results 

are demonstrated in Figure 4-2 (d-f). In all three filtered surfaces, the surface color becomes 
monochromatic in blue, which corresponds to the color representing zero elevation. This result 
indicates that, the Gaussian high-pass filter can effectively remove the surface variations. More 
importantly, as can be also observed in the filtered images, cracks are still preserved through this 
filtering process. This filtering result justifies the choice of the cutoff frequency based on the crack 
width. 

• Low-pass filtering result 

As a subsequent step, a Gaussian low-pass filter is applied to the high-pass filtered surfaces for 
noise suppression purpose. Generally, the higher the resolution of the data, the smaller the 
minimum crack width can be detected. During the low-pass filtering process in this study, the 
minimum width of the preserved cracks is selected as 10 mm. Therefore, according to section 3.1.4, 
the low-pass cutoff frequency is equal to 1

10
 cycle/mm. Results of the low-pass filtering are 

demonstrated in Figure 4-3. For each range surface, the side views (along the longitudinal vehicle 
driving direction) of the original surface [Figure 4-3 (a-c)], high-pass filtered surface [Figure 4-3 
(d-f)], and low-pass filtered surface [Figure 4-3 (g-i)] are illustrated in this figure, respectively. 
Again, by comparing the side views of the original surface [Figure 4-3 (a-c)] and high-pass filtered 
surface [Figure 4-3 (d-f)], it is clear that the high-pass filter is capable of removing the surface 
variations, and the filtered surface is centered at zero elevation. Meanwhile, by applying the 
proposed low-pass filtering, the image noises are suppressed, as can be clearly observed in Figure 
4-3 (g) and (i). Judging from the elevation information, the transverse cracks in Surface 1, indicated 
in Figure 4-3 (g), are preserved through the low-pass filtering process. Through these low-pass 
filtering examples, the effectiveness of the Gaussian low-pass filter on noise removal is 
successfully demonstrated. 
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Figure 4-3. Low-pass filtering result: side views of (a-c) the original range Surface 1, 2, and 3; (d-f) the high-

pass filtered range Surface 1, 2, and 3; and (g-i) the high-pass and low-pass filtered range Surface 1, 2, and 3.



68 
 

• Multiple notch filtering result 

The grooved patterns existing in Surface 1 can be removed by using the proposed notch filtering 
technique. Based on the information presented in section 3.1.4, the following parameters are used 
to design the multiple notch filter (see Figure 3-7): groove spacing 𝑔𝑔 = 20 mm; orientation angle 
𝜃𝜃 = 0°; number of harmonics to be filtered out 𝑄𝑄 = 4; frequency radius 𝐷𝐷𝑛𝑛 = 0.2𝐹𝐹0. Result of the 
notch filtering is illustrated in Figure 4-4. By applying the notch filtering, the grooved patterns are 
successfully removed from the surface, as can be seen from the zoomed-in view in Figure 4-4 (b) 
and (c) for a comparison on before and after filtering. It is evident that the proposed notch filtering 
technique is capable of effectively removing the grooved patterns while preserving the cracks. 

 
Figure 4-4. Multiple notch filtering result on Surface 1: (a) the high-pass, low-pass, and notch filtered range 

surface; (b) zoomed-in view before notch filtering; and (c) zoom-in view after notch filtering. 

4.1.2 Crack Detection Results Based on Contouring Analysis 

Through the filtering processes, both the surface variations and grooved patterns are eliminated 
from the surface, and the image noises are significantly reduced. Subsequently, the contouring 
analysis implemented using marching squares algorithm and associated parameters (section 3.1.5) 
is applied on the filtered image surface, and the obtained contour maps are displayed in Figure 4-5 
(a-c). This figure shows the extracted contours by thresholding each filtered range surface at ℎ =
−1 mm. In this figure, the cracks are extracted from all three surfaces, but meanwhile many small 
contours are also detected due to the remnant image noises.  

By applying the criteria expressed in Equations (3-8) and (3-9), majority of the non-crack contours 
can be removed. In this study, the parameters in Equations (3-8) and (3-9) are assigned as:  𝑡𝑡𝑡𝑡𝑙𝑙1 =
100 mm2, and 𝑡𝑡𝑡𝑡𝑙𝑙2 = 0.2. After removing the non-crack contours, the cracks are extracted from 
the contour maps, and superimposed on the filtered range images, as shown in Figure 4-5 (d-f). 
These filtered range images are considered as the ground truth. In Surface 1 [Figure 4-5 (d)], the 
transverse cracks are clearly extracted; in Surfaces 2 [Figure 4-5 (e)] and 3 [Figure 4-5 (f)], the 
punchout and corner break cracking patterns are detected with high accuracy as well, as can be 
observed from the zoomed-in view in Figure 4-5 (h) and (i). By comparing each contour map with 
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the corresponding detected cracks, it can be seen that the proposed non-crack contour removal 
criteria [Equations (3-8) and (3-9)] are very effective on discriminating the real cracks from the 
non-crack contours.  

 
Figure 4-5. Detected contours and cracks: (a-c) contour detection results on the filtered range Surface 1, 2, 
and 3; (d-f) crack detection results on the filtered range Surface 1, 2, and 3; and (g-i) zoomed-in views of the 

crack detection results. 
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4.1.3 Validation 

A validation procedure is performed using the precision-recall analysis (section 2.5.1). In this 
study, the ground truth crack pixels are obtained through a binarization procedure on the filtered 
range images followed by a manual pixel selection process. The result of the precision-recall 
analysis is summarized in Table 4-1. The performance metrics are calculated using the crack 
detection results of all three images considered in the experimental study. As presented in Table 
4-1, the average values of the Precision, Recall, and F1 are 91.7%, 97.1%, and 94.3%, respectively, 
indicating high accuracy of the proposed crack detection methodology. Moreover, judging by these 
metrics, the proposed methodology can achieve consistent accuracy on detection of different types 
of cracks under the influence of grooved patterns, elevation variations, and image noises, thus 
demonstrating the robustness of the proposed methodology.  

In addition, the precision-recall analysis is performed on the crack detection results of the first 
image [Figure 4-2 (a)] under three scenarios: i) only the high-pass filtering is not applied in the 
pre-processing; ii) only the low-pass filtering is not applied; and iii) only the notch filtering is not 
applied. The resulted F1 values in the three scenarios are 13.0%, 74.2%, and 18.3%, respectively. 
The rapidly deteriorated values demonstrate poor crack detection performance when one of the 
filtering processes is missing, indicating that the proposed methodology is a systematic integral 
framework and each component is necessary to provide robust performance. 

To further validate the proposed crack detection methodology, a comparison is performed between 
the proposed methodology and a seed-based crack detection methodology [28]. This technique 
was extended from grid cell analysis, a fast and accurate crack detection technique that was first 
proposed by [51] and later used and extended by many other researchers [28,53,139-141] for crack 
detection and comparison purposes. 

The seed-based approach is performed on the same filtered image data and evaluated using the 
same performance metrics as the proposed approach. The results are presented in Table 4-1. The 
binary maps of i) the ground truth, ii) the cracks detected by the proposed methodology, and iii) 
by the seed-based approach on Surface 1 are provided in Figure 4-6 as an illustrative example. As 
can be observed from this figure, both the proposed methodology and the seed-based approach can 
extract the major trend of the cracks, but the latter failed to detect some cracks (i.e., false negative). 
From Table 4-1, the average Precision of the proposed methodology is similar to that of the seed-
based approach; however, the average Recall of the seed-based approach is much lower than that 
of the proposed methodology, indicating more false negatives detected by the seed-based approach. 
Based on the average F1 value, it can also be concluded that the proposed crack detection 
methodology yields better crack detection results than the seed-based approach. 

4.1.4 Limitations 

The limitation of the proposed methodology is that it relies on detecting elevation difference in 
local image regions to interpret the presence of cracks, therefore the performance might be 
deteriorated when detecting shallow cracks. Future research effort will be devoted to i) extracting 
cracking properties such as crack width from the detected crack contours in an accurate and 
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efficient manner; and ii) exploring the possibility of fusing the intensity image and range image as 
complementary parts to improve crack detection performance. 

Table 4-1. Summary of test results 

 
*: Zhou, et al. [28] 

 
Figure 4-6. Binary crack maps of Surface 1: (a) ground truth by manual selection; (b) detected by the 

proposed methodology; and (c) detected by the seed-based approach. 

 

 Category  
Performance measures of 
the proposed methodology 

 
Performance measures of 
the seed-based approach* 

Image 
index 

Cracking   
pattern 

Grooved 
pattern 

Elevation 
variation 

Noise 
level 

 
Precision 

(%) 
Recall  

(%) 
F1 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1 
Transverse 
cracking 

YES Medium High  91.1 92.6 91.8   89.9 81.3 85.4 

2 Punchout NO High Medium  88.1 99.3 93.4  89.8 68.1 77.4 

3 
Corner 
break 

NO High 
Extremely 

High 
 95.8 99.4 97.6  93.0 78.0 84.9 

Average      91.7 97.1 94.3   90.9 75.8 82.6 
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4.2 Deep Learning-Based Crack Classification 

Section 4.2.1 first briefly introduces the data generation process; and then,  the experimental setup 
and the associated results and discussions are presented in section 4.2.2 and 4.2.3, respectively. 
Finally, the limitation of the proposed DCNN-based crack classification methodology is explained 
in section 4.2.4. 

4.2.1 Data Generation 

• Image acquisition and processing 

 
Figure 4-7. Samples of the collected range images. 

The roadway image data used for analysis was collected by the laser imaging system (section 2.4) 
during an over one-year period through 2018 and 2019 on multiple concrete roads in Iowa. The 
sliding widow technique as described in section 2.3.2 is adopted to crop the roadway image data 
into image patches (dimension: 256×256×1). It is noted that this methodology directly works with 
raw range image data. No data pre-processing techniques (e.g., noise removal and crack 
enhancement) have been applied to the collected image data. Figure 4-7 demonstrates some data 
samples that are collected for this study. As can be observed in this figure, the image samples are 
highly diverse, which include cracks (in clean surfaces and grooved surfaces) and non-crack 
samples (clean surfaces, grooves, pavement edges, and shoulder drop-offs). It is worth noting that, 
most of these image samples suffer from varying levels of surface variations as well as scanning 
noises, as can be interpreted by the color variations.  

• Ground truth generation 

Each acquired image sample is classified by trained personnel to generate a ground truth label (i.e., 
“crack” vs. “non-crack”). 

• Data augmentation  
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Data augmentation techniques (section 2.3.3) including random translation and rotation are used 
to effectively increase the number of crack samples. Each crack image is augmented through 
random translations along upward, downward, left, and right directions for a random distance 
within 100 pixels; additionally, augmented images are created by counterclockwise rotating the 
original image by 45°, 90°, and 135°.  

• Dataset configuration 

In total, 25785 crack samples (including the augmented images) and 26623 non-crack samples are 
obtained for training and testing purposes. The collected range images are separated into three 
datasets, which are the training dataset, validation dataset, and test dataset 1, respectively. Images 
in the training dataset are used to fit the DCNN model. During training, the fitted model routinely 
(e.g., every half an epoch) makes predictions on the validation dataset, which provides an 
evaluation on the goodness of the model fit and indicates if overfitting occurs or not. The test 
dataset is used after the training is completed to evaluate the performance among different 
networks. Shahin, et al. [142] investigated the issue of data division and its impact on network 
model performance. According to their case study, the optimal performance was obtained when 
20% of the data were used for validation, 70% of the remaining data for training and 30% for 
testing. The data split ratio adopted in this study is 60% for training, 20% for validation, and 20% 
for testing, similar as obtained in the optimal case in [142]. Meanwhile, the ratio between crack 
and non-crack samples is around 1:1 to maintain a balanced class in the dataset. The number of 
images in each dataset is tabulated in Table 4-2. 

Table 4-2. Number of image samples in each dataset. 

 
 

Additionally, another range image dataset, denoted as “test dataset 2”, is collected by the laser 
imaging system (section 2.4) for testing and demonstration purposes. It consists of 5000 cracks 
and 5000 non-crack samples. This laser-scanned range image dataset is very different than the 
training dataset and test dataset 1 by the following facts: i) locations: the test dataset 2 is acquired 
in Alabama which is different than the location where the training, validation, and test dataset 1 
are obtained; ii) roadway types: the test dataset 2 is acquired on both asphalt and concrete roadways, 
which contains crack patterns that are different than test dataset 1, such as the alligator cracks 
illustrated in Figure 4-8. The purpose of introducing such an additional dataset for testing is to 
demonstrate the conclusions regarding the proposed DCNNs and associated hyperparameter 
selection for laser-scanned range images are consistent among diverse range image data, which 

  

Training 

dataset 

Validation 

dataset 

Test 

dataset 1 

Test 

dataset 2 

Crack 15785 5000 5000 5000 

Non-crack 16623 5000 5000 5000 

Total 32408 10000 10000 10000 
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provides the necessary real-world complexity to better explain the performance of the proposed 
DCNNs. The test dataset 2 [130] is made publicly available to benefit the community. 

 
Figure 4-8. Samples of the test dataset 2. 

4.2.2 Experimental Setup 

• Computing hardware and software 

All the experiments are performed on the same computer with the following specifications: CPU: 
Intel i7-8750H; GPU: Nvidia GTX 1060 with 6GB RAM. The proposed methodology is 
implemented in MATLAB environment [143]; its deep learning toolbox has also been used. 

• Parameter initialization 

The learnable parameters in the proposed DCNNs are initialized based on the specifications in 
section 2.3.4.  

4.2.3 Results and Discussions 

Two experiments are designed to determine the joint hyperparameter specification for an optimal 
DCNN architecture and the associated training scheme for roadway crack classification using 
laser-scanned range images. The first experiment, Case I, intends to explore the optimal network 
architecture by varying the hyperparameters related with network structure; Case II is focused on 
determining the optimal values for the hyperparameters related with training. In addition, two more 
experiments, Case III and IV, are implemented to further validate and demonstrate the network 
performance. Case III is a comparative study on the classification performance between the 
proposed architecture and four benchmark architectures. Case IV demonstrates the crack 
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classification performance of the proposed architecture with a new set of range image data from 
actual roadway surveys. 

• Case I: impacts from different kernel sizes, network depths and widths 

Case I is designed to evaluate the impacts by changing the hyperparameters related with network 
structure. The first hyperparameter considered in Case I is the network depth. In a neural network, 
lower convolutional layers extract low-level features such as edges and color, while deeper layers 
extract shapes and texture. Increasing the number of convolutional/fully connected layers allows 
the network to adapt to high-level features but can meanwhile increase the computational cost. 
Pauly, et al. [129] showed that the network with a deeper architecture had higher classification 
performance on crack detection. The second hyperparameter is the kernel size in each 
convolutional layer. Convolutions with large filter kernels are beneficial in terms of their 
expressiveness and ability to extract features at a large scale, but the computation is 
disproportionately expensive [144]. In literature, it is reported [30] that smaller kernel sizes have 
better performance on crack detection than larger kernels. The third hyperparameters to be 
evaluated is the network width, which refers to the number of kernels in each layer. Enlarging the 
width of each convolutional layer can enhance the model capacity to represent the hierarchical 
features, but it can affect the training process by introducing more parameters which require 
stronger regularization. In a defects detection study, Faghih-Roohi, et al. [128] showed that a wider 
(i.e., a larger number of kernels) architecture had better performance but required a longer training 
time. Nevertheless, a comprehensive discussion on the optimal joint specification on these 
hyperparameters for deep learning-based roadway crack classification using laser-scanned range 
images is still missing in the literature. 

The network configurations considered in Case I are tabulated in Table 4-3. As shown in this table, 
three hyperparameters including the network depth, kernel size, and network width are varied 
among different architecture candidates. To evaluate the effects of the network depths, 
architectures with different depths from five to eight weight layers (i.e., convolutional layers and 
fully connected layers) are created. Regarding the variations of kernel sizes, three patterns are 
considered: i) the sizes of the filter kernels gradually increase as the network goes deeper (i.e., an 
ascending trend); that is, the network intends to extract larger objects of interest in deeper layers; 
ii) the kernel sizes gradually decrease along the convolutional layers (i.e., a descending trend); and 
iii) the kernel sizes stay the same among all convolutional layers (i.e., a constant trend). Similarly, 
three patterns are considered for the network widths; that is, the number of kernels 
increases/decreases/stays the same from lower convolutional layers to deeper ones. The purpose 
of varying the network width is to investigate the effects of putting emphasis on extracting different 
levels of features.  

Accordingly, the total number of architectures studied in Case I is 36. The symbols “↘”, “↗ ”, and 
“→” in Table 4-3 denote “descending”, “ascending” and “constant” trends, respectively; the 
operator Conv(𝑎𝑎, 𝑏𝑏)  denotes that in the convolutional layer, the kernel size is 𝑎𝑎 × 𝑎𝑎  and the 
network width (i.e., number of kernels) is 𝑏𝑏 ; note that each Conv()  operation consists of a 
convolutional layer followed by a batch normalization layer and a LReLU layer; the stride for each 
convolutional layer is 2, except that the last convolutional layer in the architecture uses 1×1 
kernels with a stride of 1; different padding sizes are assigned for each convolutional layer to match 
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the specific dimension of the feature map, as shown in Table 4-3; FC(𝑥𝑥) denotes that the number 
of neuron output from the fully connected layer is 𝑥𝑥; Softmax(𝑦𝑦) denotes that the number of 
classes is 𝑦𝑦. An example of the architecture is illustrated in Figure 3-10. 

To isolate the influence, the hyperparameters associated with training are configured with the same 
setting among different candidates in Case I. The initial learning rate is selected as 0.01, and the 
learning rate drop factor is set as 0.8. In LReLU layers (section 2.3.1), the gradient for negative 
neuron input α = 0.01 is selected, because this value is widely used in existing studies [38,90,145-
147]. The dropout factor is fixed as 50%. According to [92], the probability to drop out each neuron 
is usually set as 50%, which is close to optimal for a wide range of networks and tasks. The mini-
batch size is 60; that is, during each iteration, a subset (i.e., 60 images) of the training dataset is 
used to update the learnable parameters. One epoch is a full pass through the entire training dataset 
using mini-batches. As indicated by Table 4-2, the number of images in the training dataset is 
32408; thus, the total number of iterations in each epoch is 540. The number of epochs is set as 30, 
which allows a sufficient amount of iterations for the training to converge. The weight decay and 
momentum are set as 0.0003 and 0.9, respectively, because these values are widely used in existing 
literature [30,38,39,42,129]. Discussion in Case II will show that such hyperparameter values for 
the mini-batch sizes, learning rates, dropout factors, and LReLU factors can yield the highest 
classification performance.



77 
 

Table 4-3. Case I: network configuration. 

 

Architecture Hyperparameters  Layer type 

 Network 
depth 

Kernel 
size 

Network 
width  Conv Conv Conv Conv Conv Conv Dropout Conv FC Softmax 

     Input dimension     
     256 ×256 128×128 64×64 32×32 16×16 8×8     
1 5 ↘ ↗  (11,16) (7,32) (3,48) - - - 50% (1,2) 2 2 
2 5 ↘ ↘  (11,48) (7,32) (3,16) - - - 50% (1,2) 2 2 
3 5 ↘ →  (11,48) (7,48) (3,48) - - - 50% (1,2) 2 2 
4 5 ↗ ↗  (3,16) (7,32) (11,48) - - - 50% (1,2) 2 2 
5 5 ↗ ↘  (3,48) (7,32) (11,16) - - - 50% (1,2) 2 2 
6 5 ↗ →  (3,48) (7,48) (11,48) - - - 50% (1,2) 2 2 
7 5 → ↗  (7,16) (7,32) (7,48) - - - 50% (1,2) 2 2 
8 5 → ↘  (7,48) (7,32) (7,16) - - - 50% (1,2) 2 2 
9 5 → →  (7,48) (7,48) (7,48) - - - 50% (1,2) 2 2 
10 6 ↘ ↗  (15,16) (11,32) (7,48) (3,64) - - 50% (1,2) 2 2 
11 6 ↘ ↘  (15,64) (11,48) (7,32) (3,16) - - 50% (1,2) 2 2 
12 6 ↘ →  (15,48) (11,48) (7,48) (3,48) - - 50% (1,2) 2 2 
13 6 ↗ ↗  (3,16) (7,32) (11,48) (15,64) - - 50% (1,2) 2 2 
14 6 ↗ ↘  (3,64) (7,48) (11,32) (15,16) - - 50% (1,2) 2 2 
15 6 ↗ →  (3,48) (7,48) (11,48) (15,48) - - 50% (1,2) 2 2 
16 6 → ↗  (7,16) (7,32) (7,48) (7,64) - - 50% (1,2) 2 2 
17 6 → ↘  (7,64) (7,48) (7,32) (7,16) - - 50% (1,2) 2 2 
18 6 → →  (7,48) (7,48) (7,48) (7,48) - - 50% (1,2) 2 2 
19 7 ↘ ↗  (19,16) (15,32) (11,48) (7,64) (3,80) - 50% (1,2) 2 2 
20 7 ↘ ↘  (19,80) (15,64) (11,48) (7,32) (3,16) - 50% (1,2) 2 2 
21 7 ↘ →  (19,48) (15,48) (11,48) (7,48) (3,48) - 50% (1,2) 2 2 
22 7 ↗ ↗  (3,16) (7,32) (11,48) (15,64) (19,80) - 50% (1,2) 2 2 
23 7 ↗ ↘  (3,80) (7,64) (11,48) (15,32) (19,16) - 50% (1,2) 2 2 
24 7 ↗ →  (3,48) (7,48) (11,48) (15,48) (19,48) - 50% (1,2) 2 2 
25 7 → ↗  (7,16) (7,32) (7,48) (7,64) (7,80) - 50% (1,2) 2 2 
26 7 → ↘  (7,80) (7,64) (7,48) (7,32) (7,16) - 50% (1,2) 2 2 
27 7 → →  (7,48) (7,48) (7,48) (7,48) (7,48) - 50% (1,2) 2 2 
28 8 ↘ ↗  (23,16) (19,32) (15,48) (11,64) (7,80) (3,96) 50% (1,2) 2 2 
29 8 ↘ ↘  (23,96) (19,80) (15,64) (11,48) (7,32) (3,16) 50% (1,2) 2 2 
30 8 ↘ →  (23,48) (19,48) (15,48) (11,48) (7,48) (3,48) 50% (1,2) 2 2 
31 8 ↗ ↗  (3,16) (7,32) (11,48) (15,64) (19,80) (23,96) 50% (1,2) 2 2 
32 8 ↗ ↘  (3,96) (7,80) (11,64) (15,48) (19,32) (23,16) 50% (1,2) 2 2 
33 8 ↗ →  (3,48) (7,48) (11,48) (15,48) (19,48) (23,48) 50% (1,2) 2 2 
34 8 → ↗  (7,16) (7,32) (7,48) (7,64) (7,80) (7,96) 50% (1,2) 2 2 
35 8 → ↘  (7,96) (7,80) (7,64) (7,48) (7,32) (7,16) 50% (1,2) 2 2 
36 8 → →  (7,48) (7,48) (7,48) (7,48) (7,48) (7,48) 50% (1,2) 2 2 
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Table 4-4. Case I: performance metrics. 

 

Architecture Training 
dataset 

 Validation dataset 
(at the end of training) 

 Test dataset 1  Test dataset 2  Number of 
parameters 

Time 
(min) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 

1 44  98.2 96.6 97.4  98.0 98.2 98.1 6.8  93.6 98.9 96.2 7.7  45332 
2 71  97.4 97.6 97.5  97.1 98.5 97.8 10.8  91.6 99.4 95.3 11.6  90100 
3 86  96.8 97.7 97.3  96.6 98.8 97.7 13.1  91.5 99.5 95.3 13.9  144068 
4 61  99.2 96.6 97.9  99.2 98.3 98.7 9.1  94.1 97.9 96.0 8.4  215572 
5 84  98.5 97.8 98.2  98.0 99.1 98.5 11.9  84.8 98.8 91.2 12.2  142068 
6 104  97.8 97.7 97.7  97.8 98.2 98.0 16.4  88.8 99.1 93.6 15.6  396740 
7 51  99.7 97.6 98.6  99.5 98.7 99.1 8.1  97.1 99.3 98.2 7.5  105620 
8 71  98.7 98.5 98.6  98.7 99.0 98.9 11.1  95.7 99.5 97.6 11.6  107124 
9 90  99.2 97.6 98.4  98.9 98.6 98.8 13.2  95.3 99.3 97.2 14.4  232772 
10 91  99.3 98.8 99.0  99.3 99.1 99.2 11.2  92.2 99.2 95.6 10.8  170100 
11 197  99.3 98.7 99.0  98.6 99.3 98.9 28.9  96.8 99.1 97.9 30.0  467524 
12 159  99.2 98.7 98.9  98.7 99.2 99.0 22.9  92.5 99.3 95.7 25.1  424916 
13 84  99.6 99.2 99.4  99.6 99.2 99.4 13.8  98.7 99.2 98.9 13.6  903924 
14 123  99.4 99.2 99.3  99.6 99.3 99.5 19.7  96.7 99.4 98.1 18.7  453700 
15 117  99.7 98.8 99.3  99.6 99.2 99.4 18.6  97.2 99.2 98.2 20.3  912212 
16 71  99.7 99.4 99.5  99.5 99.4 99.5 7.9  94.9 99.6 97.2 7.8  253300 
17 108  99.6 99.0 99.3  99.4 99.2 99.3 17.6  97.1 99.8 98.4 16.4  255556 
18 93  99.7 98.7 99.2  99.5 99.0 99.3 14.6  98.8 99.5 99.1 14.4  342740 
19 151  99.7 99.5 99.6  99.5 99.4 99.5 22.8  99.3 99.4 99.3 19.4  504580 
20 550  99.3 98.9 99.1  99.4 99.2 99.3 111.7  98.4 98.8 98.6 107.3  1633476 
21 327  99.5 98.9 99.2  99.2 99.3 99.2 61.6  98.1 99.3 98.7 65.9  949220 
22 87  99.5 99.4 99.4  99.7 99.4 99.5 13.7  97.1 99.4 98.2 15.3  2751748 
23 167  99.4 99.4 99.4  99.5 99.2 99.4 30.0  96.6 99.3 97.9 27.1  1154756 
24 126  99.5 98.6 99.1  99.5 99.0 99.2 21.4  95.9 97.4 96.6 22.2  1743332 
25 71  99.7 99.5 99.6  99.7 99.6 99.6 7.9  99.5 99.5 99.5 7.8  503684 
26 144  99.8 99.5 99.6  99.5 99.4 99.5 26.3  99.1 99.6 99.4 21.2  506692 
27 95  99.8 99.3 99.5  99.6 99.3 99.5 16.1  98.5 99.3 98.9 14.7  455012 
28 249  99.6 98.0 98.8  99.5 99.1 99.3 35.2  98.7 98.9 98.8 31.3  1231876 
29 1355  99.1 98.2 98.6  99.0 99.1 99.0 224.3  98.8 98.9 98.9 232.8  4427956 
30 539  98.8 98.2 98.5  99.2 99.1 99.1 102.8  99.1 97.6 98.3 103.8  1788980 
31 116  99.6 98.4 99.0  99.7 99.1 99.4 18.4  93.6 98.7 96.1 15.9  6814596 
32 262  99.8 97.9 98.9  99.8 98.9 99.3 45.9  94.3 96.8 95.5 41.0  2514356 
33 132  98.7 97.6 98.1  99.2 98.5 98.8 21.7  93.4 98.4 95.9 21.7  2962100 
34 73  99.7 99.2 99.4  99.5 99.5 99.5 8.0  98.6 99.4 99.0 8.0  880132 
35 219  99.6 99.5 99.5  99.4 99.4 99.4 38.7  99.3 98.8 99.1 33.0  883892 
36 96  99.7 99.2 99.4  99.5 99.4 99.5 16.1  99.2 99.4 99.3 14.7  567860 
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Table 4-5. Case I: the effects of changing the kernel sizes. 

 
 

Table 4-6. Case II: performance metrics. 

 
  

Architecture Kernel 
size 

 Training 
dataset  

Validation dataset 
(at the end of training) 

 Testing dataset 1  Testing dataset 2  Number of 
parameters 

 Time 
(min) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 

25 7×7  71  99.7 99.5 99.6  99.7 99.6 99.6 7.9  99.5 99.5 99.5 7.8  503684 
25-A 3×3  35  99.4 97.8 98.6  99.0 98.4 98.7 5.8  91.7 98.4 95.0 5.9  93444 
25-B 11×11  86  99.8 99.0 99.4  99.7 99.1 99.4 11.3  98.9 99.4 99.2 11.3  1242116 

 

Architecture Mini-batch 
size 

Dropout 
factor 

LReLU 
factor 

 Training 
dataset  

Validation dataset 
(at the end of training) 

 Testing dataset 1  Testing dataset 2 

     Time 
(min) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

25 60 0.5 0.01  71  99.7 99.5 99.6  99.7 99.6 99.6 7.9  99.5 99.5 99.5 7.8 
                    
25 10 0.5 0.01  143  99.9 99.5 99.7  99.8 99.5 99.6 7.7  99.3 99.3 99.3 7.8 
25 20 0.5 0.01  103  99.8 99.6 99.7  99.5 99.6 99.5 7.8  99.5 99.6 99.5 7.8 
25 30 0.5 0.01  85  99.8 99.6 99.7  99.6 99.6 99.6 7.8  99.1 99.6 99.4 7.8 
25 40 0.5 0.01  74  99.8 99.5 99.6  99.5 99.6 99.5 7.7  99.2 99.7 99.5 7.9 
25 50 0.5 0.01  74  99.8 99.6 99.7  99.6 99.5 99.5 7.8  99.2 99.4 99.3 7.8 
25 70 0.5 0.01  70  99.8 99.5 99.7  99.7 99.2 99.5 7.7  99.3 99.3 99.3 7.8 
25 80 0.5 0.01  70  99.7 99.5 99.6  99.7 99.4 99.5 7.8  98.5 99.8 99.1 7.8 
25 90 0.5 0.01  71  99.6 99.4 99.5  99.6 99.5 99.6 7.8  97.6 99.7 98.7 7.8 
25 100 0.5 0.01  73  99.8 99.4 99.6  99.6 99.3 99.4 7.7  98.6 99.6 99.1 7.9 
                    
25-C 60 N/A 0.01  72  99.6 98.9 99.2  99.6 99.3 99.5 8.0  98.6 99.2 98.9 7.8 
25-D 60 0.1 0.01  71  99.6 99.3 99.5  99.6 99.4 99.5 7.9  98.6 99.6 99.1 7.8 
25-E 60 0.3 0.01  71  99.8 99.3 99.5  99.6 99.3 99.4 7.8  99.5 99.4 99.4 7.8 
25-F 60 0.7 0.01  71  99.9 99.3 99.6  99.6 99.3 99.4 7.9  99.1 99.7 99.4 7.8 
25-G 60 0.9 0.01  71  99.4 98.6 99.0  99.4 99.1 99.3 8.2  98.7 99.4 99.1 7.8 
                    
25-H 60 0.5 0.001  71  99.8 99.4 99.6  99.5 99.3 99.4 7.8  98.7 99.7 99.2 7.8 
25-I 60 0.5 0.005  71  99.7 99.4 99.5  99.5 99.3 99.4 7.8  99.1 99.4 99.3 7.8 
25-J 60 0.5 0.05  71  99.8 99.6 99.7  99.6 99.4 99.5 7.8  99.2 99.6 99.4 7.8 
25-K 60 0.5 0.1  71  99.8 99.7 99.7  99.7 99.3 99.5 7.9  98.5 99.8 99.1 7.8 
25-L 60 0.5 0.5  71  97.3 94.1 95.6  98.4 96.4 97.4 7.9  85.3 98.4 91.4 7.8 
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Table 4-7. Case III: performance metrics. 

 
 

Architecture Training 
dataset  

Validation dataset 
(at the end of training) 

 Testing dataset 1  Testing dataset 2  Number of 
parameters 

Time 
(min) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Time 
(sec) 

(×106) 

25 71  99.7 99.5 99.6  99.7 99.6 99.6 7.9  99.5 99.5 99.5 7.8  0.5 
Resnet18 217  99.8 99.8 99.8  99.7 99.9 99.8 47.0  100.0 99.3 99.6 47.2  11.7 
Resnet34 379  99.8 99.6 99.7  99.8 99.7 99.7 63.1  99.9 99.4 99.6 64.0  21.8 
Resnet50 668  99.8 99.8 99.8  99.7 99.7 99.7 98.3  99.9 99.6 99.8 99.6  25.6 
Resnet101 1340  99.7 99.8 99.8  99.8 99.9 99.8 145.5  99.7 99.8 99.8 146.2  44.5 
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The performance metrics used for comparison are the Precision, Recall, F1 score (section 2.5.1), 
training time, testing time, and number of parameters. Detailed statistics of these metrics are 
tabulated in Table 4-4. To highlight, the F1 scores on the test datasets 1 and 2 are illustrated in 
Figure 4-9 (a) and (b), respectively. Note that the horizontal axis of this figure is the architecture 
index, as defined in Table 4-3. These indexes are further grouped by the patterns of variations in 
the kernel sizes, referred to as the descending (“↘”)/ascending (“↗”)/constant (“→”) trends, 
respectively. In this figure, blue/orange/yellow colors represent the architectures with ascending 
(“↗”)/descending (“↘”)/constant (“→”) network widths, respectively. Meanwhile, a curve is fit to 
the calculated F1 values, as indicated by the red dashed line in both plots.  

Several observations regarding the impact from different architecture layouts through 
hyperparameter selection can be made from Figure 4-9 (a) and (b) by comparing the F1 scores on 
the test datasets:  

i) By investigating the networks with different depths, it can be observed from the F1 
statistics on both test datasets that better classification performance can be achieved as the network 
depth increases from 5 layers until reaching 7 weight layers. For example, the average F1 score 
increases from 98.4% (5-layer architectures) to 99.4% (7-layer architectures) for the test dataset 1, 
and from 95.6% to 98.6% for the test dataset 2, respectively. A similar trend can be observed from 
the fitted curves as well, where the peak occurs at 7-layer architectures for both test datasets; 

ii) On the comparison between the architectures with the same depths but different trends of 
kernel sizes, the ones using constant kernel sizes yield the best performance, which achieve higher 
F1 scores by an average margin of 0.4% for the test dataset 1 and 1.7% for the test dataset 2 than 
the ones with descending/ascending kernel sizes; 

iii) The architectures with ascending network widths (blue color) generally outperform the 
ones with descending/constant widths on the F1 scores by an average of 0.3% for the test dataset 
1 and 0.5% for the test dataset 2, which suggests it is beneficial to put more emphasis on extracting 
the high-level features.  
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Figure 4-9. Case I: performance metrics: (a) F1 score on the test dataset 1; and (b) F1 score on the test 

dataset 2. 

Judging from the highest F1 scores on the test datasets 1 and 2, the No. 25 candidate, which is a 
7-layer architecture with 7×7 convolutional kernels and ascending network widths, is determined 
as the optimal architecture for the laser-scanned range image datasets. The reason the No. 25 
architecture yields the highest classification performance among the 36 candidates may be as 
follows: among a family of DCNN classifiers proposed in this study (see Table 4-3), the No. 25 
architecture can best describe and reflect the real-world complexities of the 3D laser-scanned 
roadway range image data, which are collected from the fields under practical conditions. 
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Figure 4-10. Case I: performance metrics: (a) training time; (b) testing time on the test dataset 1; and (c) 

number of parameters. 

The other performance metrics including the training time, testing time, and number of parameters 
are further evaluated to help determine the optimal architecture. The training time, testing time, 
and number of parameters for each architecture are illustrated in Figure 4-10 (a), (b), and (c), 
respectively. Only the testing time on the test dataset 1 is illustrated for concision, because the 
statistics of testing time on the test datasets 1 and 2 are very close. The color notation and 
horizontal axis labels are the same as defined in Figure 4-9.  From Figure 4-10 (a) and (c), it can 
be seen that the training time increases as the network architecture becomes deeper, introducing 
more parameters to participate in the training. For example, by gradually increasing the network 
depths through No. 5, 14, 23, and 32 architectures, the training and testing time increase from 84 
mins to 262 mins, and 11.9 secs to 45.9 secs, respectively.  Variations in the network widths also 
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lead to a significant impact on the network efficiency. As an example, for the No. 22, 23, and 24 
architectures, which have the same depths and kernel sizes but ascending/descending/constant 
network widths, the corresponding training and testing time are 87, 167, and 126 mins, and 13.7, 
30.0, and 21.4 secs, respectively. In general, the architectures with ascending network widths (blue 
color) lead to the most efficient training [Figure 4-10 (a)] and testing [Figure 4-10 (b)] performance 
(i.e., an average of 96 mins training time and 13.6 secs testing time); on the contrary, the 
architectures with descending network widths result in the worst efficiency (i.e., an average of 279 
mins training time and 48.1 secs testing time). This phenomenon implies that employing a larger 
number of kernels in the lower layers will cause more computational efforts on the convolution 
operation, which drastically deteriorates the efficiency of the network.  

Based on the above observations, a series of conclusions can be summarized: i) the 
hyperparameters including the network depths, kernel sizes, and network widths can impact the 
accuracy and efficiency of the neural networks to a significant extent; ii) regarding the network 
depths, generally, a deeper architecture yields better performance but meanwhile requires more 
computational efforts; the optimal depth for the proposed crack classification DCNN for the 
collected laser-scanned roadway range image data is 7 weight layers; iii) using constant kernel 
sizes leads to the highest classification performance; iv) variations in the network widths have a 
large impact on the efficiency of the network; it is preferable to gradually increasing the number 
of kernels from lower layers to deeper layers (i.e., an ascending trend), which results in better 
performance on both the accuracy and efficiency than the other cases (i.e., descending and constant 
trends). 

Furthermore, an additional study is performed to explore the effects of using medium-sized 
constant kernels vs. small/large kernels. Two variants of the No. 25 architecture are implemented. 
The only difference is that the kernel sizes are 7×7, 3×3, and 11×11 for the original No. 25 
architecture and its variants No. 25-A, and 25-B, respectively. The corresponding performance 
metrics are tabulated in Table 4-5. It can be seen from this table that the architecture with medium-
sized kernels (kernel size = 7×7) yields the highest F1 scores (1% improvement from No.25-A on 
the test dataset 1 and 4.5% on the test dataset 2), and meanwhile maintains an efficient training 
and testing speed.  

• Case II: impacts from different mini-batch sizes, learning rates, dropout factors, and LReLU 
factors  

With the optimal DCNN architecture (No. 25 in Table 4-3) selected in Case I, the effects of varying 
the mini-batch sizes, learning rates, dropout factors, and LReLU factors are investigated in Case 
II. Case II is comprised of four subcases as described below: 

i) Different mini-batch sizes 

The mini-batch size is the number of image data that are utilized in each iteration to update the 
parameters. It is common to train and test image datasets in small batches to improve the efficiency 
and generalization. Accordingly, the choice on the mini-batch size affects the convergence speed 
and computational efficiency. It has been observed in literature that when using a larger batch there 
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is a degradation in the quality of the model, as measured by its ability to generalize [148]. In Case 
II, the effects of utilizing different mini-batch sizes for training are investigated. 

Different mini-batch sizes varying from small to medium [Equation (4-1)] are adopted to train the 
optimal architecture (No. 25 in Table 4-3). The performance metrics are tabulated in Table 4-6 and 
illustrated in Figure 4-11 (a) and (b), respectively. As can be observed from Figure 4-11 (a), the 
training time are effectively reduced by up to 40% as the mini-batch size increases from 10 to 50, 
indicating an improvement of the network efficiency. Keeping increasing the mini-batch to 100 
does not lead to a significant impact on the training efficiency. Meanwhile, from Figure 4-11 (b), 
which shows the F1 scores on the test datasets 1 and 2, it can be concluded that increasing the 
mini-batch sizes from 10 to 100 result in relatively small variations (≤0.5%) in the testing F1 score. 
By jointly considering the network performance in terms of efficiency and accuracy, the optimal 
value for the mini-batch size is selected as 60, which is used in Case I. 

 Mini-batch sizes = [ 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100 ] (4-1) 

 
Figure 4-11. Case II: the effects of changing the mini-batch size: (a) training time; and (b) F1 score on the test 

datasets 1 and 2.  

ii) Different initial learning rates and learning rate drop factors 

The learning rate is considered as one of the most important hyperparameters that needs to be 
carefully tuned for the model [38]. Determination of the learning rate is a very critical and yet 
case-dependent procedure, as it affects the model ability to quickly adapt to the data through 
controlling the step size. A learning rate that is too large will result in a slow convergence or even 
instability, whereas a too small one can cause the parameters to stop responding to the error 
gradient. According to the recent observations [149,150], smaller learning rates lead to a sharper 
minima and poorer generalization. In the literature [149,151], large learning rates are 
recommended. In Case II, the proper learning rate for the proposed DCNN is determined. 
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This study utilizes a piecewise learning rate, which gradually decreases during training, to facilitate 
a quick convergence in the early stage of training and fine-tune the parameters in the late stage. 
The hyperparameters related with the learning rate are the initial learning rate and the learning rate 
drop factor. By using a piecewise learning rate strategy, the learning rate decays by multiplying a 
drop factor every a few iterations, for example, every two epochs. In this study, a grid search is 
employed to explore the optimal joint specification of the values related with the learning rates. A 
set of values for the initial learning rates and learning rate drop factors are specified as Equations 
(4-2a) and (4-2b), respectively. In total, 30 combinations of the initial learning rates and drop 
factors are utilized to train the optimal architecture. During training, the learning rate drops every 
two epochs. On evaluating the performance, the F1 scores evaluated on the test datasets 1 and 2 
are employed as the metrics, which are illustrated in Figure 4-12 (a) and (b), respectively. Detailed 
statistics are not tabulated herein for concision. In each plot of Figure 4-12, the horizontal x axis 
is the initial learning rate value, and the horizontal y axis is the learning rate drop factor; the vertical 
z axis is the testing F1 score; in addition, a surface is fit to the data samples. It can be observed 
that as the learning rate drop factor decreases, the F1 scores on both test datasets will reduce 
correspondingly (by up to 4% in the test dataset 1 and 9% in the test dataset 2), especially when 
the initial learning rate is relatively small. With a large initial learning rate (e.g., between 0.005 
and 0.05) and a high drop factor (e.g., 0.7 to 0.9), the resulted testing F1 scores will plateau to a 
high value (≥99%). The optimal point marked in Figure 4-12 corresponds to an initial learning 
rate of 0.01 and a drop factor of 0.8, which are used for the study in Case I. 

 Initial learning rate = [ 0.001 0.005 0.01 0.05 0.1 ]  (4-2a) 

 Learning rate drop factor = [ 0.9 0.8 0.7 0.6 0.5 0.4 ]  (4-2b) 
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Figure 4-12. Case II: the effects of changing the learning rate: (a) F1 score on the test dataset 1; and (b) F1 

score on the test dataset 2. 

iii) Different dropout factors 

In DCNN training, it may occur that a neural network is too attuned to the training data that it loses 
the ability to generalize to new data. Such a phenomenon is referred to as overfitting. Dropout [92] 
is an effective regularization technique to address this issue. During training, each neuron input to 
the dropout layer is randomly deactivated by a probability (i.e., dropout factor), such that the 
network is forced to adapt to different neurons, which improves generalization. In the literature 
[92], it is reported that a dropout factor of 50% is suitable for a wide variety of tasks. In Case II, 
five variants of the optimal architecture, denoted as No. 25-C through G, are developed, each 
having a different dropout factor in their dropout layer, as expressed in Equation (4-3). It is noted 
that a dropout factor of 0 indicates no dropout is applied to the neuron input; and, a dropout factor 
of 90% indicates that each neuron is very likely to be deactivated during training.  

 Dropout factor = [ 0 10% 30% 70% 90% ] (4-3) 

The experimental results on the acquired laser-scanned range image datasets are tabulated in Table 
4-6. From the table, varying the dropout factor does not impact the training or testing efficiency; 
also, judging from the validation and testing metrics, no overfitting is observed. The F1 scores on 
the test datasets 1 and 2 are illustrated in Figure 4-13 (a). It is observed that the dropout value 
corresponding to the highest F1 scores on the test datasets 1 and 2 is 50%, which is adopted by the 
optimal architecture in Case I. Moreover, as the dropout factor gradually increases from 0 to 50% 
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or gradually decreases from 90% to 50%, the network achieves better classification performance 
on the test datasets. 

 
Figure 4-13. Case II: the effects of changing the dropout factor and LReLU factor: F1 score on the test 

datasets 1 and 2 upon changing (a) the dropout factor; and (b) the LReLU factor. 

iv) Different LReLU factors 

In literature, LReLU [90] is often utilized as the nonlinear activation function to add nonlinearity 
to a neural network. LReLU is a bi-linear function whose gradient for non-negative input is 1, and 
α for negative input. Usually, α is selected as a small positive value to avoid “dying neuron” 
problem during back-propagation. Five variants of the optimal architecture, denoted as No. 25-H 
through L, are developed to investigate the influence of changing the LReLU factor. Their LReLU 
factor values in each LReLU layer are expressed in Equation (4-4). 

The corresponding performance metrics are displayed in Table 4-6. It is observed from this table 
that varying the LReLU factor does not lead to a notable impact on the training and testing 
efficiency on the collected laser-scanned range image datasets. Regarding the classification 
accuracy, the F1 scores on the test datasets 1 and 2 upon changing the LReLU factors are illustrated 
in Figure 4-13 (b). It can be seen when the LReLU factor is relatively small (≤ 0.1), the resulted 
F1 scores have a very marginal variation of less than 0.3%. However, when a large LReLU factor 
α = 0.5 is used, the classification accuracy deteriorates, as can be observed from the F1 scores on 
both test datasets. It is also noteworthy that the LReLU factor leading to the highest F1 scores on 
the test datasets is equal to 0.01, which is adopted in the optimal architecture in Case I. 

 α = [ 0.001 0.005 0.05 0.1 0.5 ] (4-4) 

• Case III: proposed vs. benchmark architectures 

This section illustrates the comparison result on the model performance between the optimal 
architecture (No.25) and four benchmark architectures as Resnet18, Resnet34, Resnet50, and 
Resnet101 [82], which represent different levels of model complexities. These four architectures 
are commonly used DCNNs for image classification and segmentation tasks. Figure 4-14 
illustrates the comparison result, and the detailed statistics are presented in Table 4-7. Consistent 
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results on the F1 score and testing time on two different test datasets are observed. It can be seen 
from Figure 4-14 (a) that the proposed architecture achieves similar levels (within a margin of 
0.3%) of F1 scores on the test datasets 1 and 2 as the benchmark architectures. It is thus shown the 
proposed architecture is capable of achieving high accuracy on crack classification. Meanwhile, 
judging from Figure 4-14 (b-c), the proposed architecture yields the most efficient training and 
testing performance compared against the benchmarks; and, it is able to reflect the complexity of 
the range image data by using the least amount of learnable parameters, as shown in Figure 4-14 
(d). For example, the No. 25 architecture only consumes around 5% of the training and testing 
time and 1% of the number of learnable parameters as consumed by Resnet101, but it can achieve 
the same level of classification accuracy (within a margin of 0.3% in the F1 scores on both test 
datasets). 

 
Figure 4-14. Case III: performance comparison: (a) F1 score on the test datasets 1 and 2; (b) training time; (c) 

testing time on the test datasets 1 and 2; and (d) number of parameters. 

• Case IV: a crack classification example using the optimal architecture 

To further demonstrate the classification performance of the proposed DCNN methodology, the 
trained optimal architecture is tested on another new dataset from actual roadway surveys. As 
illustrated in Figure 4-15, the range images in this dataset are collected from three roadway 
surfaces [Figure 4-15 (a), (b), and (c)] containing cracks and many non-crack patterns such as 
grooves and pavement edges. It is also worth noting that the range images suffer from drastic 
surface variations, indicated by the change of color. The image patches are collected by using the 
sliding window technique with a 50% overlap and predicted by the trained classifier. The predicted 
crack map for each surface is enclosed by a black line, and the corresponding testing F1 score is 
99.6%, 99.8%, and 99.4%, respectively. It is shown that the proposed methodology can detect 
surface cracks with a high accuracy under the disturbance of many non-crack patterns such as 
grooves and pavement edges. 
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Figure 4-15. Case IV: detected crack maps: (a) Surface 1; (b) Surface 2; and (c) Surface 3. 

4.2.4 Limitations 

Despite the high classification performance as demonstrated in the experimental study, the 
proposed DCNN methodology has a limitation that it cannot detect shallow cracks, because this 
range-based methodology relies on the variations in the elevation data to detect the presence of 
cracks. A few false detection examples on the test datasets 1 and 2, predicted by the No.25 
architecture in Case I, are demonstrated in Figure 4-16 (a) and (b), respectively. From Figure 4-16 
(a), it is observed that the false negative examples all contain shallow cracks, while the false 
positive examples are generated due to a lack of non-crack samples with potholes in the training 
data. Meanwhile, in Figure 4-16 (b), similar issue of false negative detection occurs due to shallow 
cracks. 

 
Figure 4-16. False detections on: (a) test dataset 1; and (b) test dataset 2.  
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4.3 Deep Learning-Based Crack Segmentation 

To disambiguate, the terms “Net-1”, “Net-2”, and “Net-3” in this section refer to the DCNN 
architectures defined in section 3.2.2. 

Section 4.3.1 first introduces the data generation process; then, information on the experimental 
setup is described in section 4.3.2; and, in section 4.3.3, the experimental results and associated 
discussions are summarized. 

4.3.1 Data Generation 

• Image acquisition and processing 

The diversity of the image data used in this study is represented by the following facts: i) multiple 
locations of data acquisition: the image data are acquired through a long-term (over one year) effort 
from multiple concrete roadways with highly complex surface conditions in the states of Iowa and 
Alabama; ii) high irregularity in crack patterns: the captured cracks include longitudinal and 
transverse cracks on concrete pavements suffering from the issues including surface variations and 
grooved patterns; iii) various crack orientations through data augmentation: the image data is 
further processed through augmentation techniques including rotation and mirroring as described 
in the subsequent section. In total, over 1200 image frames (dimension: 4096×2048×1) are 
captured. Subsequently, each image frame is cropped into patches (dimension: 256×256×1) 
through the sliding window technique. As a result, over 4000 image patches containing cracks are 
selected by trained personnel as the data samples.  

 
Figure 4-17. An example of the acquired image data: (a) raw range image contaminated with surface 

variations and grooved patterns; and (b) manually generated ground truth. 

• Ground truth generation 

The ground truth pixel label map for each image patch is generated through a manual labeling 
process, and further carefully inspected by trained personnel for quality control. Figure 4-17 
illustrates an example of the generated image data. Figure 4-17 (a) shows a raw range image patch 
contaminated with surface variations and grooved patterns; and, Figure 4-17 (b) illustrates the 
corresponding ground truth pixel label, where the white pixels are cracks and black ones are non-
crack pixels. 
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• Data augmentation 

Data augmentation techniques (section 2.3.3) including rotation (90°, 180°, and 270° counter-
clockwise) and mirroring (top-bottom and left-right) are adopted to augment the obtained image 
patches and the associated ground truth in this study.  

• Dataset configuration 

Table 4-8 shows the configuration of the acquired datasets, where the image patches are separated 
into the training, validation, and test datasets following a ratio of 60%:20%:20%. The training 
dataset is utilized to fit the DCNN model. The validation dataset is evaluated every a few iterations 
during training to provide a measure on the model fit and indicate whether overfitting occurs. After 
training, the trained model makes predictions on the test dataset. The metrics on the test dataset 
provide a cross-comparison between different DCNN models on their segmentation performance. 

Table 4-8. Detailed configuration on the image datasets. 

 
 

4.3.2 Experimental Setup 

• Computing hardware and software 

The specifications of the data processing computer are as follows: CPU is Intel i7-8750H and GPU 
is Nvidia GTX 1060 with 6GB RAM. The proposed methodology is implemented in MATLAB 
R2019a with its deep learning toolbox [143]. 

• Hyperparameter configuration 

In this study, the mini-batch SGD with momentum algorithm (section 2.3.4) is adopted as the 
optimization technique for training. The associated hyperparameters include the weight decay 
factor, momentum, learning rate, LReLU factor, mini-batch size, and number of epochs. It is noted 
that, upon training different architectures, the same hyperparameter values are adopted in this study 
to provide a basis for comparison. The hyperparameter values are as follows: weight decay factor 
= 0.0003; momentum = 0.9; initial learning rate = 0.01; learning rate drop factor = 0.8; LReLU 
factor = 0.01; mini-batch size = 10; number of epochs = 10. 

• Parameter initialization 

The learnable parameters are initialized based on the settings in section 2.3.4. 

  

Data type Image dimension  Number of samples 
Training Validation Test  

range image 256×256×1 15016 5005 5005 
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4.3.3 Results and Discussions 

Two experimental cases are performed in this study. Case I is designed to investigate the influences 
from different network depths and residual connections on crack segmentation performance. From 
Case I, an optimal architecture among the twelve proposed DCNNs that yields the highest 
performance measures is selected. Then, in Case II, the performance of the optimal architecture is 
further demonstrated on three roadway images. 

• Case I: comparison on the segmentation performance 

As introduced in section 3.3, this study proposes six encoder-decoder networks denoted as Net-1 
through 6 with gradually increased network depths; from Net-1 through 6, the number of residual 
connections is also increased from 1 to 6, as listed in Table 3-1 and illustrated in Figure 3-12 and 
Figure 3-13. Besides, to isolate the impacts from increasing the network depth and from adding 
residual connections, another six architectures denoted as Net-1A through 6A are also designed as 
“plain” counterparts; these variants have the same layer configurations as their originals except 
they do not employ any residual connection.  

Besides, CrackNet II [30], a DCNN developed for roadway crack segmentation with range images, 
is adopted in Case I for comparison. Thus, in total, thirteen architectures are trained and tested on 
the same datasets under the same hyperparameter configurations. Five metrics including Precision, 
Recall, F1, IOU, and BF score are evaluated on the validation dataset and test dataset, respectively, 
with their mean values tabulated in Table 4-9. Meanwhile, the highest value in each type of metrics 
is highlighted in bold font. From the “validation metrics” section in Table 4-9, it can be seen Net-
4 has the highest values in mean F1, IOU, and BF score among all cases, indicating the best model 
fit. Net-4 also yields the highest values in the mean F1, IOU, and BF score calculated on the test 
dataset. The metrics are further illustrated in Figure 4-18 to compare the performance among 
different architectures. Figure 4-18 (a-e) shows the mean values of the Precision, Recall, F1, IOU, 
and BF score evaluated on the test dataset, respectively. The horizontal axis refers to different 
architectures, and the vertical axis represents percentage values. The following observations can 
be made from Figure 4-18: 

i) In all five metrics, the networks with residual connections (blue color) yield higher values 
than their “plain” counterparts without residual connections (red color), especially in deeper 
architectures (e.g., Net-6 vs. Net-6A); 

ii) From Net-1A through Net-6A (without residual connections), the network depth is 
increased from 6 to 16 layers (see Table 3-1). Meanwhile, their metrics values first reach the peak 
at Net-2A then deteriorate. The mean F1, IOU, and BF score drop by over 50% from Net-2A to 
Net-6A. It is observed that deeper architectures (Net-2A through 6A) without residual connections 
lead to worse performance on the test dataset; 

iii) From Net-1 through Net-6 (with residual connections), while architecture becomes deeper, 
the corresponding metrics first increase then plateau at the highest values. It is thus demonstrated 
that using residual connections is beneficial in that it avoids performance degradation in deeper 
architectures by providing low-level information to the decoder; 
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iv) Judging by the mean F1, IOU, and BF score values, Net-4 results in the highest 
performance on the test dataset, thus it is selected as the optimal architecture; by comparing it with 
CrackNet II (green color), it can be seen that CrackNet II only exceeds marginally in the mean 
Precision value by 1.4%; however, Net-4 outperforms CrackNet II on the mean Recall, F1, IOU, 
and BF score by 43.2%, 33.4%, 37.9%, and 29.3%, respectively. Thus, the segmentation 
performance of the proposed network (i.e., Net-4) on range image data is validated through a 
comparison with other semantic DCNNs.
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Table 4-9. Case I: performance metrics. 

 

Index Net name Validation metrics  
(mean percentage values) 

 Testing metrics  
(mean percentage values) 

 Time 

Precision  Recall  F1  IOU BF 
score 

 Precision Recall F1 IOU BF 
score 

 Training 
(min) 

Testing 
(sec) 

1 Net-1 88.9 57.4 67.2 52.8 75.8  88.7 57.2 67.0 52.6 75.6  817.5 105.9 
2 Net-2 88.9 81.8 84.2 73.8 89.7  88.9 81.7 84.1 73.7 89.6  872.0 111.5 
3 Net-3 88.8 85.9 86.7 77.2 92.1  88.9 85.9 86.7 77.2 92.2  818.0 122.3 
4 Net-4 90.1 85.4 87.2 77.9 92.8  90.1 85.5 87.3 78.0 92.9  934.9 134.5 
5 Net-5 89.9 85.1 87.0 77.5 92.6  89.8 85.1 86.9 77.4 92.7  947.6 162.3 
6 Net-6 88.7 86.5 87.1 77.7 92.7  88.7 86.5 87.1 77.7 92.8  1473.7 162.1 
7 Net-1A 86.1 59.8 66.9 53.0 74.9  85.9 59.8 66.8 52.8 74.6  833.2 105.5 
8 Net-2A 84.5 74.5 78.1 65.2 87.7  84.6 74.3 78.0 65.1 87.6  850.2 108.1 
9 Net-3A 78.5 71.6 74.0 59.7 85.6  78.7 71.5 73.9 59.7 85.5  858.4 136.2 
10 Net-4A 72.2 60.7 65.1 49.6 78.1  72.4 60.7 65.2 49.7 78.0  908.2 149.6 
11 Net-5A 58.3 47.3 50.5 35.6 62.1  58.6 47.5 50.8 35.9 62.2  940.5 155.0 
12 Net-6A 52.1 16.3 21.9 13.5 33.0  52.2 16.7 22.4 13.8 33.5  1521.6 180.1 
13 CrackNet II 91.5 42.8 54.5 40.6 64.1  91.5 42.3 53.9 40.1 63.6  2127.2 244.8 
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Figure 4-18. Case I: performance metrics on the test dataset: (a) Precision; (b) Recall; (c) F1; (d) IOU; and (e) 

BF score.
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In addition to showing the mean values of each type of metrics, the histograms of the metrics 
evaluated on the test dataset (which contains more than 5000 range images) are also displayed in 
Figure 4-19. In this figure, each plot is arranged such that the five metrics including Precision, 
Recall, F1, IOU, and BF score are illustrated from left to right; in addition, the histogram generated 
by CrackNet II is also illustrated in this figure; the horizontal axis of each plot refers to the 
percentage value of each type of metrics, and the vertical axis represents the frequency counts. 
Both axes are plotted in the same range and scale. From Figure 4-19, it is clear that from Net-2A 
through Net-6A, the histogram of each type of metrics gradually shifts, resulting in a larger 
dispersion and smaller mean value; such a phenomenon indicates performance deterioration 
caused by increasing the network depth. Regarding the effect of residual connections, adding 
residual connections results in a marginal difference in shallow architectures (i.e., Net-1 vs. Net-
1A). However, as the architecture evolves into a deeper layout from Net-1 to Net-6, adding residual 
connections prevents the performance degradation issue which occurs among the architectures 
without residual connections. Again, it can be observed the optimal architecture Net-4 outperforms 
CrackNet II, in that the histograms of Net-4 for the Recall, F1, IOU, and BF score have smaller 
spreads and higher mean values. 

 
Figure 4-19. Case I: histograms of the performance metrics on the test dataset: (a) Precision; (b) Recall; (c) 

F1; (d) IOU; and (e) BF score. 
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Testing results on twelve crack images which are contaminated with surface variations and grooves 
are illustrated in Figure 4-20 to demonstrate the segmentation performance by different networks. 
In Figure 4-20, the raw range image input, pixel label ground truth, and segmentation results are 
displayed from top to bottom. Meanwhile, the mean percentage values of F1, IOU, and BF score 
are labelled on top of each corresponding result. It is observed that Net-1, Net-1A, and CrackNet 
II yield some false positive detections by misidentifying the grooves as cracks. By increasing the 
network depth, such a misidentification issue vanishes for the proposed DCNNs. Again, it is shown 
that Net-4 yields the highest segmentation performance on these image samples. Furthermore, the 
influence of residual connection is also revealed in this figure by comparing each network pair 
(e.g., Net-4 vs. Net-4A). It can be seen that the networks with residual connections (Net-2 through 
6) can yield higher metrics values on almost all twelve samples than their “plain” counterparts. 
Similar as the general trends observed in Figure 4-19, from Net-2A through Net-6A, the 
segmentation performance keeps deteriorating; on the contrary, due to the existence of residual 
connections, Net-2 through Net-6 yield very consistent crack segmentation performance under the 
disturbance of grooves. 

Regarding the efficiency of the proposed architectures, the training and testing time are listed in 
Table 4-9 and illustrated in Figure 4-21. Generally, from Net-1 through Net-5, as the network 
becomes deeper, the training time has little variation; however, in Net-6, the time cost for training 
is drastically increased by over 70%, indicating a deteriorated training efficiency. The same trend 
can be observed among Net-1A through 6A as well. Also, using residual connections yields very 
marginal influence on the training time. Regarding the testing efficiency, the deeper architectures 
require a longer time for testing; for example, the testing time is increased by 70% from Net-1A 
to 6A. Meanwhile, as can be observed, using residual connections leads to up to 12% variations in 
the testing time, and its impact on the testing efficiency is not consistent. Additionally, from Figure 
4-21, it is clear that the optimal architecture Net-4 is more efficient than CrackNet II in that Net-4 
only consumes 44% and 55% of the time cost for training and testing, respectively, by CrackNet 
II.  
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Figure 4-20. Case I: Illustrative examples of the crack segmentation performance (the F1, IOU, and BF score 

values are displayed at the title of each prediction).
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Figure 4-21. Case I: network efficiency: (a) training time; and (b) testing time. 

• Case II: performance demonstration on concrete roadway images 

This section further demonstrates the segmentation performance of the optimal architecture, Net-
4, on three large roadway surfaces (dimension: 2048×2048×1). All three surfaces contain different 
levels of surface variations and grooved patterns, reflecting the real-world complexities. A pixel-
level crack map is generated for each roadway surface, following the framework described in 
section 3.3.2. It is noted the range image data in Case II did not participate in the training in Case 
I. Figure 4-22 (a-c) illustrates the segmentation results on Surfaces 1, 2, and 3, respectively. In 
Figure 4-22, the raw range image, ground truth, and predicted crack map of each surface are 
illustrated from top to bottom, respectively. Three metrics including F1, IOU, and BF score are 
employed to provide a quantitative measure on the segmentation performance on each image 
surface, as listed in Table 4-10. The F1, IOU, and BF score values on all three images are above 
80%, 70%, and 90%, respectively, indicating very high segmentation performance by Net-4. Thus, 
it is demonstrated the proposed methodology can achieve accurate and robust crack segmentation 
performance on laser-scanned roadway range images, in which the cracks are contaminated by 
surface variations and grooved patterns. 

Table 4-10. Case II: performance metrics. 

 
 

Image 
name 

Data type Performance 
metrics (%) 
F1 IOU BF 

score  
Surface 1 range image 87.1 77.1 98.5 
Surface 2 range image 84.8 73.6 96.9 
Surface 3 range image 83.6 71.9 92.4 
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Figure 4-22. Case II: Predicted crack maps on roadway images: (a) Surface 1; (b) Surface 2; and (c) Surface 3.
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4.3.4 Limitations 

The proposed DCNN-based methodology may suffer from the issue of shallow cracks in the range 
image data, as shown in Figure 4-23. This figure illustrates ten samples containing shallow cracks, 
where the raw range image, ground truth, and predicted crack map are displayed from top to bottom, 
respectively. Net-4 trained in Case I is utilized for testing the raw range images. The percentage 
values of three metrics including F1, IOU, and BF score are calculated and labelled on top of each 
predicted crack map. By both judging from the low metrics values and from graphically comparing 
the predicted crack map vs. ground truth, it can be observed that the performance of the proposed 
DCNN deteriorates on images containing shallow cracks, represented by false negative detections.  

 
Figure 4-23. Performance deterioration due to shallow cracks. 
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4.4 Deep Learning-Based Data Fusion for Crack Classification 

In this experimental study section, first, the data acquisition and data generation process are 
introduced in section 4.4.1; then, information on the experimental setup is provided in section 4.4.2; 
in section 4.4.3, two experimental cases are performed to evaluate the network performance with 
different image types and architectures.  

4.4.1 Data Generation 

• Image acquisition and processing 

In this study, the raw image range and intensity data are collected by the laser imaging system over 
a one-year period on multiple concrete roadways. The acquired raw range images are further 
processed by trained personnel using the proposed image pre-processing technique introduced in 
section 3.1.4, to generate filtered range images which are free from surface variations, scanning 
noises, and non-crack patterns. A sliding window technique as used in [39,93] is applied to crop 
all the image data into many patches which have smaller sizes to reduce computational cost. Also, 
the fused raw image patches are created using the raw range and intensity image pairs by the 
procedure described in section 3.4.2. As a result, four types of image patches including raw range, 
raw intensity, filtered range, and fused raw images are prepared for analysis. The dimension of 
each image patch is 256×256×1 for the raw range, raw intensity, and filtered range image, but 
256×256×2 for the fused raw image. 

• Ground truth generation 

Each image patch is categorized with a “crack” or “non-crack” label by trained personnel. 

• Data augmentation 

Meanwhile, to effectively increase the number of samples (i.e., image patches) in each type of 
image, data augmentation techniques including rotation (counterclockwise 90°, 180°, and 270°) 
and mirroring (left-right and up-down) are performed. Data augmentation is an effective approach 
to reduce overfitting and improve generalization by increasing the number of image data through 
label-preserving transformations [92,96]. In total, 30000 crack samples (including augmented 
samples) and 30000 non-crack samples are generated for each type of image data; the amount of 
crack and non-crack samples is kept the same to avoid the issue of class imbalance [103].  

• Dataset configuration 

The image samples are further separated into three datasets including the training dataset, 
validation dataset, and test dataset following a ratio of 60%:20%:20%. The training dataset is used 
to fit the DCNN model. The validation dataset is evaluated during training to provide a measure 
on the goodness of model fit and indicate if overfitting occurs. After training is completed, the 
network is tested on the test dataset to evaluate the model ability to generalize and adapt to a new 
dataset. Detailed configuration on the image dataset for each type of image data is tabulated in 
Table 4-11.  
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The above data augmentation and dataset generation process is repeated for each type of image 
data. Thus, each type of image forms a set of training, validation, and test datasets.  

Table 4-11. Detailed configuration on the image dataset. 

 
 

4.4.2 Experimental Setup 

Two cases are performed in this section. Case I investigates the impacts on DCNN-based roadway 
crack classification by heterogeneous image data including raw range, raw intensity, filtered range, 
and fused raw image; Case II further compares the performance of two architectures using the 
fused raw image data, upon which the one leading to better classification performance is 
determined. 

• Computing hardware and software 

On performing all the experiments, the same computing device is used to isolate the influence 
from different devices. The specifications of the computer are as follows: CPU: Intel Xeon E5-
2630 @2.20 GHz; GPU: Nvidia Quadro M4000 with 8GB memory. MATLAB [143] and its deep 
learning tool box are utilized to implement the proposed DCNNs. 

• Hyperparameter configuration 

The mini-batch stochastic gradient-descent (SGD) with momentum [99] is adopted in this study 
as the optimization technique for training. The hyperparameters involved in this algorithm are 
specified as follows. The momentum is set as 0.9. The weight decay is set as 0.0003. The initial 
learning rate and the corresponding learning rate drop factor are selected as 0.01 and 0.8, 
respectively; the decay period of the learning rate is set as 2 epochs; that is, the learning rate decays 
by multiplying 0.8 in every 2 epochs. One epoch is a full pass of the entire image dataset through 
mini batches. The mini-batch size is 60; that is, in each iteration, 60 images which have not yet 
participated in the training in the current epoch are randomly chosen for updating. According to 
the data generation process (see section 4.4.1), a total number of 36000 image samples are prepared 
for training (see Table 4-11), resulting in 600 iterations in an epoch with each iteration containing 
60 samples. Meanwhile, the validation dataset is evaluated every half an epoch. The statistics 
evaluated on the validation dataset at the end of training are used to interpret the goodness of model 
fit. 

• Parameter initialization 

The weights in the convolutional layers and fully connected layers are initialized by the Glorot 
initializer [100], which independently samples the weights from a Gaussian distribution with zero 

 Training Validation Test Total 
Crack 18000 6000 6000 30000 
Non-crack 18000 6000 6000 30000 
Total 36000 12000 12000 60000 
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mean and a variance based on the dimension of the weights. The biases are initialized as 0. The 
scale and shift factor in each batch normalization layer are initialized as 1 and 0, respectively. 

4.4.3 Results and Discussions 

In this section, two experimental cases are performed. Case I compares the performance of a series 
of DCNN architectures with heterogeneous image data, determining the type of image data and 
the associated architecture that yield the highest classification performance. Case II further 
determines the better heterogeneous image fusion strategy with DCNN through a comparison. 

• Case I: comparison on network performance by heterogeneous image data 

Net-A (see section 3.4.3), which is designed for single-channel image input, is trained and tested 
on three types of image data including the raw range, raw intensity, and filtered range image 
datasets. Furthermore, the fused raw image data is utilized by Net-B (see section 3.4.3) which has 
the similar layout as Net-A except it takes dual-channel image input. Comparison on the 
performance metrics demonstrates the optimal form of image data to achieve the best classification 
performance. 

A DCNN architecture [39] is employed as a benchmark architecture to further evaluate the effects 
of heterogeneous image data. This benchmark architecture is also utilized in some other 
applications such as [74,152] for comparison. It is noteworthy that the benchmark architecture 
originally utilizes raw intensity images for classification; in this study, it is trained and tested not 
only on raw intensity images, but also on raw range and filtered range images for analysis. 
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Figure 4-24. Case I: Performance metrics on the test dataset: (a) Accuracy; (b) Precision; (c) Recall; and (d) F1. 

The performance metrics including Accuracy, Precision, Recall, and F1 on the test dataset are 
illustrated in Figure 4-24 (a), (b), (c), and (d), respectively. Meanwhile, the detailed statistics on 
the performance metrics are tabulated in Table 4-12. Case I consists of seven subcases (No. 1-7 in 
Table 4-12). In the subcases No. 1, 2, 3 in Table 4-12, Net-A is trained and tested on the raw 
intensity, raw range, and filtered range image datasets, respectively; No. 4 corresponds to Net-B 
trained and tested on the fused raw image dataset; the subcases No. 5, 6, and 7 utilize the 
benchmark architecture for training and testing on the raw intensity, raw range, and filtered range 
image datasets, respectively. In all four plots of Figure 4-24, the horizontal axis refers to the 
subcase indexes as defined in Table 4-12, which are further grouped by the image types, including 
raw intensity, raw range, filtered range, and fused raw image . Several observations on this figure 
are summarized below: 

i) It is evident that using intensity image data for training and testing results in the lowest 
values on all four metrics shown in Figure 4-24. The Recall values for the subcases using intensity 
images [No. 1 and 5 in Figure 4-24 (c)] are especially lower than others, indicating a much higher 
false-negative rate. As will be demonstrated later in Figure 4-26, these false-negatives are induced 
by the issue from low contrasts between cracks and non-crack regions in the intensity images, 
which is the main reason leading to the worst performance; 

ii) Based on the comparisons on the following subcases “No. 1 vs. No. 2” and “No. 5 vs. No. 
6”, it is demonstrated that using raw range image instead of intensity image can effectively improve 
the classification performance. Given the same architecture used, the F1 values on the test dataset 
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are improved by 3% (Net-A in No. 1 and 2) and 4% (the benchmark in No. 5 and 6), respectively, 
due to the use of raw range images instead of raw intensity images. Similar level of improvement 
on the other metrics is also observed. Therefore, based on the data acquired in this study, it can be 
concluded that using raw range images is much better than using raw intensity images on DCNN-
based roadway crack classification; 

iii) To evaluate the effect of image pre-processing, comparisons between the subcases “No. 2 
vs. No. 3” and “No. 6 vs. No. 7” are performed. It can be observed that in these two comparisons, 
utilizing filtered range images instead of raw images results in 0.5% and 0.7% improvements on 
the F1 values on the test dataset, respectively. It is demonstrated that image pre-processing can 
improve the network performance on DCNN-based roadway crack classification by a noticeable 
margin. Nevertheless, considering such an improvement is achieved through an additional image 
pre-processing procedure which may require a certain level of expertise, it is still preferable to 
directly use the raw range image for real-world applications; 

iv) It is clearly demonstrated in Figure 4-24 that using fused raw image data yields the highest 
values in all four metrics. For example, by comparing the subcases between No. 2 (using raw range 
image) and No. 4 (using fused raw image), around 1.2% improvement on the F1 value on the test 
dataset are observed. Meanwhile, it can be concluded that using fused raw image leads to a more 
significant improvement on the classification performance than using filtered range images, where 
the F1 value on the test dataset in No. 4 (using fused raw image) is 0.7% higher than that in No. 3 
(using filtered range images). Unlike the image pre-processing procedure, the heterogeneous 
image fusion process is a more intuitive and straightforward approach to process the original raw 
image data, which only requires acquisition of image range and intensity data. Therefore, 
heterogeneous image fusion can be a more practical approach to improve the performance of a 
DCNN model under real-world scenarios; 

v) The proposed DCNN architecture yields similar or better performance in all the metrics 
comparing to the benchmark. Furthermore, the above observations on the effects of utilizing the 
raw intensity, raw range, and filtered range image data are mostly consistent between the proposed 
and benchmark DCNNs. It is noted that the benchmark DCNN shows a lower Precision value 
when using the filtered range image than the raw range image [see Figure 4-24 (b)], which is 
different than the proposed DCNN.
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Table 4-12. Detailed statistics on the performance metrics. 

 
 

 
Figure 4-25. Case I: Performance metrics: (a) training time; and (b) testing time.

Index Architecture Image type Validation  Testing  Time 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

 Training 
(min) 

Testing 
(sec) 

1 Net-A raw intensity 95.5 98.2 92.6 95.3   95.0 97.9 92.0 94.8  121.9 21.4 
2 Net-A raw range 98.2 99.3 97.2 98.2  98.2 99.5 96.9 98.2  102.6 25.4 
3 Net-A filtered range 98.6 99.4 97.7 98.6  98.7 99.5 97.8 98.7  129.1 25.3 
4 Net-B fused raw 

image 
99.2 99.4 99.1 99.2  99.3 99.6 99.0 99.3  173.2 38.2 

5 Cha et al. 2017 raw intensity 93.9 96.8 90.8 93.7  93.6 96.7 90.3 93.4  96.5 21.3 
6 Cha et al. 2017 raw range 97.8 99.5 96.1 97.7  97.8 99.6 95.9 97.7  96.0 21.4 
7 Cha et al. 2017 filtered range 98.3 98.4 98.1 98.3  98.5 98.9 98.1 98.5  125.9 21.2 
8 Net-C fused raw 

image 
99.0 99.5 98.4 99.0   99.0 99.6 98.3 99.0  185.5 44.0 
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Regarding the efficiency, Figure 4-25 illustrates the training time and testing time for the subcases 
in Case I. The horizontal axis in this figure is the same as specified in Figure 4-24; the vertical axis 
refers to the training and testing time for Figure 4-25 (a) and (b), respectively. It can be observed 
that, for the proposed DCNNs, using raw intensity, raw range, and filtered range images result in 
a very similar time consumption, but they are all more efficient than the subcases with fused raw 
images. The benchmark DCNN requires similar amount of time as the proposed.  In comparison, 
the training and testing time are increased by around 30% and 50% from Net-A (No. 1-3) to Net-
B (No. 4). This phenomenon may be caused by the increase in the volume of the input image data 
due to heterogeneous image fusion. 

 
Figure 4-26. Case I: Crack samples misidentified by Net-A with raw intensity image dataset (No. 1) but correctly 

identified by Net-A with raw range image dataset (No. 2). 

To further demonstrate the impact from different image datasets on the network performance, 
some prediction results are illustrated in Figure 4-26 and Figure 4-27, respectively. Figure 4-26 
demonstrates some false-negative samples predicted by Net-A which is trained and tested on the 
raw intensity image dataset (No. 1 in Table 4-12). The false negatives shown in Figure 4-26 suffer 
from low contrasts between cracks and non-crack regions and contaminations such as lane 
markings. On the contrary, the cracks are very distinguishable in the corresponding range images 
because of the elevation change. By utilizing the range image dataset, the same DCNN architecture 
(No. 2) can correctly detect and classify these image samples previously misidentified when using 
intensity images (No. 1).  

Meanwhile, some false-negative samples predicted by Net-A with the raw range image dataset 
(No. 2) are illustrated in Figure 4-27. As can be observed from this figure, most false-negative 
samples contain shallow cracks which are further contaminated with grooved patterns. Such 
shallow cracks, however, are correctly identified by Net-B with the fused raw image dataset (No. 
4) by integrating the information from the corresponding intensity images. It is thus demonstrated 
that by exploiting the spatial co-registration feature of cracks offered by heterogeneous data fusion 
of range and intensity images, the classification accuracy can be effectively improved.  
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Figure 4-27. Case I: Crack samples misidentified by Net-A with raw range image dataset (No. 2) but correctly identified 

by Net-B with fused raw image dataset (No. 4). 

Furthermore, in Case I, an example of crack detection on a concrete roadway image (denoted as 
“Surface 1”) is illustrated in Figure 4-28 to demonstrate the effects of different types of image data 
on DCNN performance. In Figure 4-28 (a), (b), and (c), the raw intensity, raw range, and filtered 
range images of Surface 1 are displayed; the fused raw image data is generated by combining 
Figure 4-28 (a) and (b), and is not shown here. Surface 1 contains two major cracks propagating 
along the transverse direction of the roadway, and many non-crack patterns (surface variations and 
grooves). As can be observed in Figure 4-28 (a), some cracked regions in the raw intensity image 
have the issue of low intensity contrast between the cracks and surroundings; similarly, in Figure 
4-28 (b), shallow cracks exist in a few regions in the raw range image. 

The crack maps based on the raw intensity, raw range, and filtered range images are generated by 
the trained Net-A (No. 1, 2, and 3 in Table 4-12, respectively); and, the crack map based on the 
fused raw image is generated by the trained Net-B (No. 4 in Table 4-12). Net-A and Net-B are 
quite similar in terms of their layouts, only except that their input layer and the first convolutional 
layer are different. Thus, the major impact factor on the detection performance is the different 
types of image data used for DCNN analysis. Figure 4-28 (d-g) illustrate the crack maps detected 
from the raw intensity, raw range, filtered range, and fused raw image data, respectively, where 
the blue, red, and black patches indicate true-positive, false-negative, and false-positive detections. 
It is noted that the crack maps are all overlaid with the same raw range image for cross comparison. 
The detailed precision-recall statistics are tabulated in Table 4-13.  

It can be seen from Figure 4-28 (d-g) and Table 4-13 that, the crack detection result based on the 
raw intensity image yields the worst performance (e.g., F1 = 88.5%), including many false-
negative detections due to the low contrast issue. By using raw range or filtered range image, the 
corresponding F1 values are increased to 95.2% and 94.0%, respectively. Meanwhile, comparison 
between the detection results using raw range image vs. filtered range image suggests that applying 
image pre-processing on the raw range image of Surface 1 does not yield higher classification 
performance in this example. Instead, by using the strategy proposed in this study to fuse the raw 
intensity and raw range image, the F1 values on Surface 1 are effectively increased by 10.4% 
(using raw intensity vs. fused raw image) and 3.7% (using raw range vs. fused raw image). As can 
be observed by comparing the differences between Figure 4-28 (g) and Figure 4-28 (d, e, f), the 
use of fused raw image data for analysis helps eliminate many false-negative and false-positive 
detections by cross-domain feature correlation and thus leads to the highest classification 
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performance. Through this example, it is again demonstrated that the proposed data fusion strategy 
can effectively improve the DCNN performance on roadway crack detection. 

Table 4-13. Precision-recall statistics of crack detection on Surface 1. 

 

Index Architecture Image type  Testing metrics on Surface 1 
 Accuracy 

(%) 
Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1 Net-A raw intensity  96.2 98.7 80.2 88.5 
2 Net-A raw range  98.3 97.8 92.7 95.2 
3 Net-A filtered range  97.9 98.9 89.6 94.0 
4 Net-B fused raw image  99.6 100.0 97.9 98.9 
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Figure 4-28. Case I: Crack detection on Surface 1: (a) raw intensity image; (b) raw range image; (c) filtered range image; 
(d) crack map detected from raw intensity image; (e) crack map detected from raw range image; (f) crack map detected 

from filtered range image; and (g) crack map detected from fused raw image.
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• Case II: comparison on network performance by different architectures with data fusion  

Through Case I, it is evident that using fused raw image data can achieve the highest classification 
accuracy. Subsequently, Case II is performed to investigate the better DCNN configuration to 
exploit the fused raw image data. As described in section 3.4.3, two architectures, Net-B and Net-
C, are designed to take fused raw image data for training and testing. The major difference is that 
Net-B represents a “fuse-extract” pattern while Net-C represents a “extract-fuse” pattern. Case II 
consists of two subcases (No. 4 and 8 in Table 4-12). The subcases No. 4 and 8 correspond to Net-
B and Net-C trained and tested on the fused raw image data, respectively. 

The corresponding performance metrics on the test dataset are illustrated in Figure 4-29. Four 
metrics including Accuracy, Precision, Recall, and F1 are plotted in Figure 4-29 (a). In this plot, 
the horizontal axis refers to the subcase indexes, which are further grouped according to the 
performance metrics. It can be seen from Figure 4-29 (a) that Net-B results in higher values in all 
four metrics by an average margin of around 0.5%; especially, the Recall of Net-B is 0.7% higher 
than that of Net-C, indicating a lower false-negative rate.  

Regarding the network efficiency, Figure 4-29 (b) shows the corresponding training and testing 
time for both subcases. The horizontal axis of Figure 4-29 (b) is the subcase indexes grouped by 
the training time and testing time. Net-B demonstrates a higher efficiency than Net-C in training 
and testing by effectively reducing the time consumption by 7% and 14%, respectively.  

Through the above comparison, it can be concluded that Net-B is more accurate and efficient than 
Net-C on roadway crack classification with data fusion. The “fuse-extract” scheme adopted by 
Net-B is superior to the “extract-fuse” scheme in Net-C in the sense that it leads to more 
improvements on the network performance. 

 
Figure 4-29. Case II: Performance metrics: (a) classification metrics on the test dataset; and (b) training and testing 

efficiency. 

4.4.4 Limitations 

The proposed methodology based on heterogeneous image fusion, although yielding high 
classification performance, still have a few limitations. The proposed DCNN methodology is a 
patch-based approach; that is, the DCNN classifier detects cracks by image patches rather than by 
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pixels, which limits the detection resolution. The proposed methodology may have difficulties 
detecting cracks on surface regions which suffer from both low intensity contrast in the intensity 
image and shallow depth in the range image, as shown in Figure 4-28 (g).  
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4.5 Deep Learning-Based Data Fusion for Crack Segmentation 

To disambiguate, the terms “Net-1”, “Net-2”, and “Net-3” in this section refer to the DCNN 
architectures defined in section 3.4.4. 

Section 4.5.1 first introduces the data generation process; then, information on the experimental 
setup is introduced in section 4.5.2; finally, two experimental cases are presented in section 4.5.3.  

4.5.1 Data Generation 

• Image acquisition and processing 

The raw intensity and range image data used in this study is resulted from a long-term (over one 
year) effort on data collection from multiple concrete roadways, under varying ambient 
environment and highly complex roadway surface conditions. The acquired roadway images are 
further cropped into small patches (dimension: 256×256×3) for analysis. In addition to the raw 
range and intensity data, filtered image data is generated through the filter-based technique [29] 
developed in section 3.1. Furthermore, fused raw image data is created by combining the raw range 
and intensity image through the proposed image data fusion approach described in section 3.4.2. 
In total, over 4000 image patches in the format of raw range, raw intensity, filtered range, and 
fused raw image data are produced. Figure 4-30 illustrates some examples from the acquired image 
data with real-world complexities. In Figure 4-30, image-related issues such as surface variations 
and grooved patterns exist in some range image patches; furthermore, as can be seen, shallow 
cracks in some range images which are further contaminated by grooved patterns are more 
distinguishable in the intensity images. Similarly, some intensity image patches suffer from the 
issue of low contrast between the crack and non-crack regions; however, in their range image 
counterparts, the cracking features are very noticeable. Besides, in the corresponding filtered range 
images, the issues of surface variations and grooved patterns are effectively eliminated. 

 
Figure 4-30. Examples of the acquired image data. 

• Ground truth generation 

The ground truth pixel label map for each image patch is generated through manual labeling by a 
group of trained personnel over a period of half a year. The manual labeling process is performed 
by leveraging information from both the range and intensity image data to reduce the uncertainties 
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due to low-contrast cracks in the intensity data or shallow cracks in the range data. It is noted that 
during training and testing, the four different types of image data share the same ground truth. 

• Data augmentation 

In this study, data augmentation techniques (section 2.3.3) including rotation (90°, 180°, and 270° 
counter-clockwise) and mirroring (top-bottom and left-right) are applied to the image patches and 
their associated ground truth, expanding the total number of image sets to over 25000. Note that 
each image set consists of a raw range image, a raw intensity image, a filtered range image, a fused 
raw image, and a ground truth pixel label map. 

• Dataset configuration 

The generated image data is split into three datasets as tabulated in Table 4-14, namely the training, 
validation, and test datasets, following a ratio of 60%:20%:20%. The training dataset contains the 
majority of the image data, which is used during training to help update the learnable parameters 
of the DCNN. The validation dataset is evaluated every a few iterations during training to help 
tune the hyperparameters of the DCNN and indicate if overfitting occurs. The test dataset, which 
does not participate in training, is then evaluated by the trained DCNN models for a cross-
comparison on their DCNN performance. Table 4-14 shows the detailed configuration of the 
generated datasets. It is noted in Table 4-14 that the same configuration (i.e., image sequence) on 
the training, validation, and testing datasets is applied to different types of image data. Thus, by 
training and testing Net-1, 2 and 3 on the image data with distinct characteristics, the impact from 
heterogeneous image data can be revealed and compared. 

4.5.2 Experimental Setup 

• Computing hardware and software 

The specifications of the data processing computer are as follows: CPU: Intel i7-8750H; GPU: 
Nvidia GTX 1060 with 6GB RAM. The proposed methodology is implemented in MATLAB 
R2019a with its deep learning toolbox [143]. 

• Hyperparameter configuration 

This study adopts the mini-batch SGD with momentum algorithm as introduced in section 2.3.4 to 
train the DCNNs. Several hyperparameters including the weight decay factor, momentum, learning 
rate, LReLU factor, mini-batch size, number of epochs are involved in the optimization process. 
Upon training different architectures, the same hyperparameter values are adopted to provide a 
basis for comparison. The hyperparameter values are as follows: weight decay factor = 0.0003; 
momentum = 0.9; initial learning rate = 0.01; learning rate drop factor = 0.8; LReLU factor = 
0.01; mini-batch size = 10; number of epochs = 10. Besides, the validation dataset is evaluated 
every half an epoch during training. 

• Parameter initialization 
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The learnable parameters in the proposed DCNNs are initialized base on the settings in section 
2.3.4. 

4.5.3 Results and Discussions 

In this section, two experimental cases are performed. In Case I, eight DCNNs with different image 
data are trained and tested for comparison. In Case II, the segmentation performance of these 
DCNNs is further demonstrated on a concrete roadway surface. 

• Case I: Impacts from heterogeneous image data 

In addition to the proposed DCNNs in this study, two benchmark architectures, namely the 
CrackNet II [30] and VGG16-FCN [83] are employed for comparison. CrackNet II is designed to 
analyze laser-scanned range images, with a surface flattening technique applied as pre-processing 
to address the issue of surface variations [30]; VGG16-FCN is designed to take raw intensity image. 
Case I consists of eight subcases (see Table 4-15), which are specified as follows: i) Net-1 with 
raw range image (No. 1 in Table 4-15, same hereafter); ii) Net-1 with raw intensity image (No. 2); 
iii) Net-1 with filtered range image (No. 3); iv) Net-2 with fused raw image (No. 4); v) Net-3 with 
fused raw image (No. 5); vi) CrackNet II with raw range image (No. 6); vii) CrackNet II with 
filtered range image (No. 7); and viii) VGG16-FCN with raw intensity image (No. 8). 



118 
 

Table 4-14. Case I: Configuration of the image datasets. 

 
 

Table 4-15. Case I: Performance metrics. 

Architecture Data type Number of crack images and ground truth 
Training 
dataset 

Validation 
dataset 

Testing 
dataset 

Total 

Net-1 
/VGG16-FCN 

raw intensity 15016 5005 5005 25026 

Net-1 
/CrackNet II 

raw range 15016 5005 5005 25026 

Net-1 
/CrackNet II 

filtered range 15016 5005 5005 25026 

Net-2 
/Net-3 

fused raw image 15016 5005 5005 25026 

 

Index Architecture Data type Validation  Testing  Time 
Precision 
(%) 

Recall 
(%) 

F1 
(%) 

IOU 
(%) 

BF 
score 
(%) 

 Precision 
(%) 

Recall 
(%) 

F1 
(%) 

IOU 
(%) 

BF 
score 
(%) 

 Training 
(min) 

Testing 
(sec) 

1 Net-1 raw range 84.0 71.3 75.6 61.9 79.5  84.0 71.3 75.6 61.8 79.4  959.5 241.4 
2 Net-1 raw intensity 76.2 58.1 63.3 50.8 68.5  76.2 57.7 63.0 50.4 68.2  977.5 246.2 
3 Net-1 filtered range 87.0 68.4 75.1 61.4 79.1  87.0 68.7 75.3 61.6 79.2  977.8 286.7 
4 Net-2 fused raw image 87.5 76.1 80.3 68.3 84.4  87.5 76.2 80.3 68.3 84.4  1013.9 313.9 
5 Net-3 fused raw image 88.0 76.7 80.8 69.0 84.9  88.0 76.6 80.7 68.9 84.9  1093.9 350.4 
6 CrackNet II raw range 92.6 24.7 36.1 24.0 39.8  92.5 24.7 36.0 23.9 39.7  2404.1 326.8 
7 CrackNet II filtered range 90.9 41.8 53.2 39.3 57.3  90.8 42.4 53.7 39.7 57.7  2445.0 404.5 
8 VGG16-FCN raw intensity 74.1 59.4 63.4 50.6 67.3  73.4 58.7 62.8 50.0 66.8  1199.4 351.5 
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Figure 4-31. Case I: Bar plots of the testing performance metrics: (a) average Precision; (b) average Recall; 

(c) average F1; (d) average IOU; (e) average BF score; (f) training time; and (g) testing time. 

The detailed performance statistics of the eight subcases are tabulated in Table 4-15 with the bold 
font faced values indicating the best performance in each metric. Meanwhile, metrics including 
the average Precision, Recall, F1 score, IOU, and BF score, which are evaluated on the test dataset, 
are illustrated in Figure 4-31 (a-e). Besides, the training time and testing time by each DCNN are 
also illustrated in Figure 4-31 (f) and (g), respectively. In Figure 4-31, the horizontal axis of each 
plot refers to the four different types of image data: raw range, filtered range, raw intensity, and 
fused raw image. Several observations can be made from Figure 4-31 and Table 4-15: 

i) Comparison between the subcases No. 1 through 4: It can be observed as a general trend 
that Net-2 with fused raw image (No. 4) yields much higher segmentation accuracy than Net-1 
with raw range (No. 1), raw intensity (No. 2), and filtered range image data (No. 3). Meanwhile, 
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using raw intensity image leads to the worst segmentation performance, due to the existence of 
low-contrast cracks and other image disturbances in the intensity image data. Taking the statistics 
of the average F1 score as an example, by using Net-2 with the fused raw image data (No. 4), the 
increase in the F1 score is 4.9% (vs. Net-1 with raw range image), 18.5% (vs. Net-1 with raw 
intensity image), and 7.5% (vs. Net-1 with filtered range image), respectively. Considering that 
Net-1 and Net-2 share the same architecture layout except the image input layer and the first 
convolutional layer, such a significant improvement on the segmentation accuracy is attributed to 
the proposed data fusion strategy. Also, despite the volume of image data is doubled during 
analysis, applying data fusion does not result in a deteriorated model efficiency. The training and 
testing time by Net-2 with fused raw image (No. 4) are only increased by 4.4% and 21.6%, 
respectively, compared to the average time consumption by the other three subcases (No. 1, 2, and 
3); 

ii) Comparison between No. 4 and No.5: From Table 4-15, given the same type of image data 
used (i.e., fused raw image), Net-3 (No. 5) has very similar performance as Net-2 (No. 4), where 
Net-3 basically outperforms Net-2 by an increase of around 0.5% in all performance metrics. 
However, Net-3 does require 7.9% and 11.4% more time than Net-2 on training and testing, 
respectively. Note that Net-2 and Net-3 represent the “fuse-extract” and “extract-fuse” patterns, 
with respect to the means to exploit the fused raw image. Judging from the segmentation accuracy, 
it can be concluded that Net-3, which employs the “extract-fuse” pattern, leads to a slightly better 
performance; 

iii) Comparison between the proposed DCNNs (No. 1, 3, 2) and the benchmarks (No. 6, 7, 8): 
For the subcases No. 1 and 6 both utilizing the raw range image, it can be seen that Net-1 (No. 1) 
almost exceeds CrackNet II in every performance metric except the average Precision value. The 
reason CrackNet II has very poor performance may be that it requires to apply a pre-processing 
technique (i.e., surface flattening) to address the issue of surface variation [30] prior to DCNN 
analysis. By comparing Net-1 (No. 3) against CrackNet II (No. 7), which are both trained and 
tested on the filtered range image, Net-1 leads to higher values in the average Recall, F1, IOU, and 
BF score on the test dataset, with an improvement of 26.3%, 21.6%, 21.9%, and 21.5%, 
respectively. Still, the average Precision value by CrackNet II is 3.8% higher than by Net-2. 
Regarding the DCNNs using intensity image data, Net-1 (No. 2) performs slightly better than 
VGG16-FCN (No. 8), as measured by their metrics values. Net-1 results in higher values in the 
average Precision, F1, IOU, and BF score with an improvement of 2.8%, 0.2%, 0.4%, and 1.4%, 
respectively, while VGG16-FCN has a 1.0% higher average Recall value. Regarding the model 
efficiency, the proposed DCNNs consume less time on both training and testing; for example, Net-
1 with filtered range image (No. 3) only consumes about 40.0% and 70.9% of the training and 
testing time by CrackNet II (No. 7), respectively. It is thus demonstrated that the proposed DCNNs 
are capable to achieve the same level or even better segmentation performance and efficiency 
compared to the benchmarks; 

iv) Comparison regarding the effects of image pre-processing: Net-1 is trained and tested by 
the raw range image (No. 1) or filtered range image data (No. 3). Note that the raw range image 
data contains image disturbances including surface variations, grooved patterns, and scanning 
noises, while the filtered range images are free from such disturbances. However, the differences 
between the subcases No. 1 and 3 in the testing metrics are very marginal, which are only -3.0%, 
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2.6%, 0.3%, 0.2%, and 0.2% for the average Precision, Recall, F1, IOU, and BF score, respectively. 
The robustness of the proposed DCNN is shown in that it does not require any image pre-
processing procedures to address the image-related issues, and that its segmentation performance 
does not deteriorate under the influence of the image disturbances in the raw range image data. 
Another observation made on CrackNet II (No. 6 vs. 7) is that the image pre-processing procedure 
does help improve the segmentation performance by CrackNet II, because it requires a procedure 
to address the issue of surface variation in the range image data prior to DCNN analysis.  

In addition to comparing the average values by the bar plots in Figure 4-31, the histograms of five 
performance metrics, evaluated on the test dataset which contains 5005 images, are also provided 
in Figure 4-32 and Figure 4-33. In the histogram plot, the horizontal axis is the percentage value 
of the metric, and the vertical axis refers to the frequency counts. And, each column in both figures 
represents a type of the performance metrics, which include the Precision, Recall, F1, IOU, and 
BF score. Figure 4-32 focuses on comparing the proposed DCNNs with different types of image 
data. Again, similar conclusions regarding the impact from heterogeneous image data can be drawn. 
In Figure 4-32 (a), (b), and (c), Net-2 with fused raw image is compared against Net-1 with raw 
range [Figure 4-32 (a)], raw intensity [Figure 4-32 (b)], and filtered range image [Figure 4-32 (c)]. 
Among the four subcases, Net-2 with fused raw image leads to the best segmentation performance, 
indicated by the higher mean and less spread of its histograms. This result again demonstrates the 
effectiveness of data fusion through cross-domain feature correlation to address the uncertainties 
in the data. Meanwhile, Net-2 and Net-3, both of which exploit the fused raw image data, yield 
very similar segmentation accuracy, as their histograms have a high degree of overlap in Figure 
4-32 (d). Finally, by comparing the histograms by the subcases No. 1 (Net-1 with raw range image) 
and No. 3 (Net-1 with filtered range image), a conclusion can be drawn that the image pre-
processing does not yield any significant improvement on the segmentation accuracy by Net-1, 
because their histograms in Figure 4-32 (e) are highly overlapped with each other. 
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Figure 4-32. Case I: Histograms of the testing metrics by the proposed DCNNs: (a) Net-1 (raw range) vs. Net-2 

(fused raw image); (b) Net-1 (raw intensity) vs. Net-2 (fused raw image); (c) Net-1 (filtered range) vs. Net-2 
(fused raw range); (d) Net-3 (fused raw range) vs. Net-2 (fused raw range); and (e) Net-1 (raw range) vs. Net-1 

(filtered range).
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Figure 4-33. Case I: Histograms of the testing metrices by the proposed DCNNs and benchmarks: (a) Net-1 
vs. CrackNet II with raw range image; (b) Net-1 vs. CrackNet II with filtered range image; and (c) Net-1 vs. 

VGG16-FCN with raw intensity image. 

Figure 4-33 illustrates the histograms by the proposed DCNNs and the benchmarks. As shown by 
Figure 4-33 (a) and (b), when using the raw range or filtered range image for analysis, Net-1 
outperforms CrackNet II by a significant level. The histograms of the Recall, F1, IOU, and BF 
score by Net-1 are more concentrated to the right end of each plot, indicating more accurate and 
consistent segmentation performance. Nevertheless, CrackNet II has better performance in terms 
of the Precision value. Figure 4-33 (c) shows the comparison between Net-1 (No. 2) and VGG16-
FCN (No. 8), where their histograms overlay with each other. However, in general, the 
performance by both Net-1 and VGG16-FCN with raw intensity image are similar and quite poor; 
their histograms have a very large dispersion, indicating that a large proportion of the predicted 
pixel label maps have very low metrics values. 
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Figure 4-34. Case I: examples of crack segmentation on image patches.



125 
 

To further demonstrate the DCNN segmentation performance, prediction results on twelve image 
patches with diverse data characteristics are illustrated in Figure 4-34. From the top to bottom of 
Figure 4-34, image data including the raw range, filtered range, raw intensity image, and ground 
truth pixel label map are displayed; then, the prediction results by different DCNNs are illustrated 
sequentially. Meanwhile, the percentage values of three metrics including the F1, IOU, and BF 
score are labelled on top of each predicted pixel label map. It can be seen in Figure 4-34 that the 
image patches to be demonstrated have very diverse characteristics, such as surface variations, 
grooved patterns, shallow cracks in range images, and low-contrast cracks in intensity images. 
Judging from the metrics values, Net-2 with fused raw image data (No. 4) yields better 
performance on almost all image patches than Net-1 with raw range (No. 1), filtered range (No. 
3), and raw intensity image data (No. 2), demonstrating the effectiveness of the proposed data 
fusion strategy. Meanwhile, Net-2 (No. 4) and Net-3 (No. 5), which utilize the fused raw image 
data, have very similar segmentation performance. It is demonstrated that by leveraging the spatial 
co-registration feature in the fused raw image data, the uncertainties (e.g., shallow cracks in range 
images and low-contrast cracks in intensity images) can be alleviated through cross-domain feature 
correlation. Regarding the benchmarks, the segmentation performance of CrackNet II with either 
raw range or filtered range image data is not as good as the proposed DCNNs, especially when 
grooved patterns (patches 3, 4, 5, 6 by No. 6) or shallow cracks (patches 11, 12 by No. 6 and 7) 
exist. VGG16-FCN (No. 8) has very consistent performance on the intensity images, which yields 
similar metrics values as the proposed Net-1 with intensity images (No. 2). 

In addition, the effect of heterogeneous image fusion on the segmentation performance of the 
proposed DCNNs (Net-1 and 2) is demonstrated in Figure 4-35, where another twelve image 
patches suffering from the issues of shallow cracks in range images or/and low intensity contrast 
in intensity images are tested by the proposed DCNNs. In Figure 4-35, the raw range image, raw 
intensity image, ground truth, and prediction results (by Net-1 with raw range image, Net-1 with 
raw intensity image, and Net-2 with fused raw image) are displayed from top to bottom. Again, 
three metrics including F1, IOU, and BF score are labelled on top of each predicted pixel label 
map. As can be seen in Figure 4-35 (a), when shallow cracks exist in the range images, Net-1 (No. 
1) which only relies on raw range image is not able to detect the cracks with shallow depths; and, 
vice versa for the intensity image cases in Figure 4-35 (b), where the low intensity contrast between 
cracks and non-crack regions causes false negative detections by Net-1 with raw intensity image. 
However, the proposed Net-2 which utilizes the fused raw image data can alleviate such image 
disturbances existing in the individual data sources [Figure 4-35 (a) and (b)] and reduce false 
negative detections through cross-domain feature correlation, leading to the highest segmentation 
performance. Furthermore, the four image patches in Figure 4-35 (c) demonstrate a mixture of 
shallow cracks in range images and low intensity contrast in intensity images. However, these two 
types of issues do not occur at the same location. Thus, the information in the range and intensity 
images complements each other, which has been leveraged by Net-2 when using the fused raw 
images. More specifically, due to the image-related issues, Net-1 using either type of image data 
alone yields false negative detections. By leveraging the fused raw image data, Net-2 can reduce 
such uncertainties through cross-domain feature correlation, as indicated by the fact that the 
prediction results by Net-2 yield the highest metrics values, and that the false negative detections 
are effectively reduced as shown in the figure.
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Figure 4-35. Case I: examples of data fusion to improve segmentation performance through cross-domain 

feature correlation.
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Figure 4-36. Case II: Segmentation performance on a concrete roadway surface: (a) raw range image; (b) filtered range image; (c) raw intensity image; 

(d) ground truth; (e) predicted by Net-1 with raw range image; (f) Net-1 with filtered range image; (g) Net-1 with raw intensity image; (h) Net-2 with fused 
raw image; (i) CrackNet II with raw range image; (j) CrackNet II with filtered range image; (k) VGG16-FCN with raw intensity image; and (l) Net-3 with 

fused raw image. 
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• Case II: Demonstration of DCNN performance on a concrete roadway surface 

After the DCNNs are trained and tested on image patches in Case I, Case II further demonstrates 
their segmentation performance with real-world complexity by applying them on an entire 
concrete roadway surface (3072×3072 pixels), representing a single lane of 6-meter long roadway. 
Note that this roadway data has not participated in the training in Case I. Figure 4-36 (a-d) illustrate 
the raw range, filtered range, raw intensity image, and ground truth label map of the roadway 
surface, respectively. This roadway surface suffers from issues such as grooved patterns and 
surface variations in the range image [see Figure 4-36 (a)], and low contrast between cracks and 
non-crack regions in the intensity image as indicated by the circles in Figure 4-36 (c). Prediction 
results by the proposed DCNNs and the benchmarks are displayed in Figure 4-36 (e-l), respectively, 
with three performance metrics including the F1, IOU, and BF score labelled on top of each 
predicted pixel label map. Meanwhile, the detailed statistics of these metrics together with the 
testing time are tabulated in Table 4-16.  

Table 4-16. Case II: Performance metrics. 

 
 

When using the raw range image for analysis, Net-1 [Figure 4-36 (e)] shows good segmentation 
performance, with the F1, IOU, and BF score as  80.5%, 67.3%, and 88.7%, respectively. However, 
for the subcase of CrackNet II with raw range image, many false detections as shown in Figure 
4-36 (i) are created due to the issues of grooved patterns and surface variations. Once the filtered 
range image is utilized, in which the image-related issues are suppressed, CrackNet II [Figure 4-36 
(j)] yields better performance than before [Figure 4-36 (i)]. Meanwhile, judging from the metrics, 
the segmentation performance by Net-1 with filtered range [Figure 4-36 (f)] vs. raw range image 
[Figure 4-36 (e)] is quite similar. In Figure 4-36 (g) and (k), where the prediction results by Net-1 
and VGG16-FCN with raw intensity image are presented, it can be observed that both DCNNs 
experience a significant deterioration in the segmentation performance due to the issue of low 
intensity contrast between cracks and non-crack regions. Regarding the DCNN efficiency, as 
shown in Table 4-16, the proposed DCNNs are more efficient than the benchmarks, where the 
testing time by the proposed DCNNs is only up to 70% of by the benchmarks (e.g., Net-1 vs. 
VGG16-FCN with raw intensity image). 

Among all eight subcases in Case II, Net-2 [Figure 4-36 (h)]  and 3 [Figure 4-36 (l)], which exploit 
the fused raw image data, lead to much better performance than the other DCNNs relying on a 
single type of image data. Through a comparison between Figure 4-36 (g) and (h), it is shown that, 

Index Architecture Data type Testing metrics  Testing 
time (sec) 

F1 (%) IOU (%) BF score (%)   
1 Net-1 raw range 80.5 67.3 88.7  31.1 
2 Net-1 raw intensity 71.6 56.1 89.9  28.3 
3 Net-1 filtered range 81.3 68.8 76.5  28.9 
4 Net-2 fused raw image 84.3 72.8 92.0  31.4 
5 Net-3 fused raw image 84.6 73.2 93.1  38.3 
6 CrackNet II raw range 39.3 27.8 28.7  68.3 
7 CrackNet II filtered range 61.6 45.1 66.7  68.6 
8 VGG16-FCN raw intensity 74.5 60.1 90.2  40.3 
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using the fused raw image data in Net-2 can address the issue of low contrast in the intensity image, 
by referring to the pixel locations in the corresponding raw range image where crack patterns exist. 
Accordingly, the segmentation performance by using the fused raw image is much better than 
using the raw intensity data alone. Furthermore, judging from the performance metrics by Net-2 
and 3, which both exploit the fused raw image data, Net-3 exceeds Net-2 by a marginal difference 
as follows: 0.3%, 0.4%, and 1.1% in the F1, IOU, and BF score, respectively. Nevertheless, as 
shown in Table 4-16, Net-2 yields less testing time than Net-3. It is thus demonstrated through 
both Case I and II that, Net-3, representing the “extract-fuse” pattern, yields slightly better 
segmentation performance than Net-2 which represents the “fuse-extract” pattern. 

4.5.4 Limitations 

Few limitations of this proposed image fusion methodology include: i) pixel-to-pixel spatial 
correspondence between the range and intensity image data is a prerequisite of the proposed data 
fusion process; ii) this methodology may have difficulties detecting cracks in image data which 
suffers from both low contrast in the intensity image and shallow depths in the range image. 
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CHAPTER 5: DISCUSSION AND FUTURE WORK 

In this chapter, first, summaries and conclusions are drawn from the experimental study section 
for each proposed methodology; then, an overall evaluation and conclusion on this technical report 
is provided. 

5.1 Image Processing Technique for Robust Crack Detection Using Range Image Data 

In section 3.1, a robust crack detection methodology utilizing frequency domain filtering and 
contouring analysis on range image data is proposed. The proposed methodology relies on 
elevation difference to detect cracks, assuming the cracks are lower than the surroundings in local 
image regions. The use of range image instead of intensity image reduces the influence from 
varying illumination condition, blemishes, and low contrast between crack pixels and their 
surrounding pixels.  

Frequency domain filtering techniques are applied as image pre-processing to address the 
following issues: surface variations, image noises, and grooved patterns. Unlike traditional pre-
processing methods, which typically require subjective parameters, the frequency domain filtering 
developed in this methodology is designed based on a physical relationship between the cutoff 
frequency and crack width. The experimental results show that it can provide robust and consistent 
results in practice and is independent from images or operating personnel.  

After image pre-processing, a crack detection methodology based on contouring analysis is 
developed to extract the cracks from the filtered range surface. In the experimental study (section 
4.1), crack detection on three bridge deck surfaces utilizing the proposed methodology is presented. 
The range surfaces vary drastically in noise level, average elevation, and crack pattern, etc. A 
validation study using the precision-recall analysis is employed to examine the accuracy of the 
proposed methodology. High metrics values are consistently achieved from the crack detection 
examples on three range images, indicating the effectiveness and accuracy of the proposed 
methodology on surface crack extraction. 

Through this filter-based methodology, Challenges 2, 3, and 4 as described in section 1.2 are 
effectively addressed. Nevertheless, because this methodology belongs to the category of non-
learning-based methodology, the uncertainties due to the image pre-processing procedure cannot 
be completely eliminated, despite the robust performance of this methodology as demonstrated 
through the experimental study. It is thus preferable to develop learning-based crack detection 
methodologies for better performance and wider applicability. Besides, it is difficult for this 
methodology to detect shallow cracks in range image data. 

5.2 Deep Learning-Based Crack Classification 

By offering an optimal DCNN architecture that utilizes raw range images, the methodology 
proposed in section 3.2 tackled two issues that have not yet been thoroughly addressed in DCNN-
based crack classification research. The first issue lies in the disturbances in laser-scanned range 
image data, including surface variations and non-crack patterns, which demands a crack 
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classification tool with robust performance. The second issue is related with the hyperparameter 
selection upon using DCNN for roadway crack classification on laser-scanned range images. A 
comprehensive comparative study is performed to address these issues.  

In the study presented in section 4.2, four cases are performed:  

i) Case I investigates the optimal hyperparameter values related with network structure, 
which include network depth, kernel sizes, and network width. The 7-layer architecture with 7×7 
convolutional kernels and ascending network widths yields the optimal performance among the 
proposed DCNN candidates, which may be that it can best describe and reflect the real-world 
complexity of the acquired laser-scanned range image data; 

ii) Case II is focused on the selection of the hyperparameters that are related with training, 
which include the mini-batch size, initial learning rate and learning rate drop factor, dropout factor, 
and LReLU factor. The experimental results show that the optimal values of these hyperparameters 
for roadway range image data are as follows: mini-batch size = 10; initial learning rate = 0.01; 
learning rate drop factor = 0.8; dropout factor = 50%; LReLU factor = 0.01; 

iii) Case III validates the performance of the proposed architecture on crack classification 
through a comparison with four benchmark architectures. Consistent results on the F1 scores of 
two test datasets of diverse image data are observed, showing the proposed architecture can 
achieve a similar level of classification accuracy as the benchmarks but with a much higher 
efficiency; 

iv) In Case IV, the performance and robustness of the proposed DCNN classifier is further 
demonstrated on a new dataset from actual roadway surveys, which contains three cracked image 
surfaces contaminated with non-crack patterns. The predicted crack map with a high testing F1 
score demonstrates the capability of the proposed methodology on detecting cracks under the 
disturbances of many non-crack patterns such as grooves, pavement edges, and shoulder drop-offs.  

The hyperparameter selection process developed in this study and the conclusions summarized 
from the experiments can provide insights to similar civil engineering applications using laser-
scanned range images for roadway crack classification. This proposed methodology helps address 
Challenge 5 (section 1.2) regarding the optimal hyperparameter configuration for DCNN-based 
crack classification applications; moreover, it tackles Challenges 2 and 3 by directly takes raw 
range images as the input without any pre-processing procedures. Still, this methodology may have 
difficulties detecting cracks with shallow depths as exposed in section 4.2.4. 

5.3 Deep Learning-Based Crack Segmentation 

The proposed methodology in section 3.3 is focused on addressing the issues of surface variations 
and grooved patterns in range image data, which are very challenging to current DCNN-based 
roadway crack segmentation applications using range images.  
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In the experimental study (section 4.3), two experimental cases are performed. Case I is designed 
to investigate the influences from different architecture layouts on the segmentation performance. 
The following concluding remarks from Case I are summarized: 

i) Based on the results of the proposed DCNN architectures, the use of residual connections 
yields higher metrics values, and it prevents performance degradation especially in deeper 
architectures; 

ii) From the illustrative results in Figure 4-20, it is shown that the proposed Net-2 through 
Net-6 can achieve high segmentation performance under the disturbance of surface variations and 
grooves due to their deep architecture layouts with residual connections; 

iii) Among the proposed DCNN architectures, Net-4 leads to the highest values in all the 
performance metrics on the test dataset, thus it is determined as the optimal architecture for 
roadway crack segmentation on laser-scanned range images in this study; 

iv) Through a comparison between Net-4 and CrackNet II, it is demonstrated that Net-4 
outperforms the latter on both the segmentation accuracy and efficiency on the test dataset. 

Furthermore, Case II is performed to demonstrate the segmentation performance of Net-4. Crack 
maps are generated for three roadway surfaces which contain different levels of surface variations 
and grooved patterns. It is shown that Net-4 achieves very high and consistent metrics values in 
all three roadway images. The robustness of the proposed Net-4 determined in this study is 
demonstrated in that it directly processes raw range images without any pre-processing procedure, 
and that it yields accurate and consistent segmentation performance in both Case I and II under 
image disturbances including grooves and surface variations.  

By leveraging this DCNN-based crack segmentation methodology, Challenge 6 as described in 
section 1.2 can be properly addressed. However, the performance of this methodology may 
deteriorate under the scenario of shallow cracks, as demonstrated in section 4.3.4. 

5.4 Deep Learning-Based Data Fusion for Crack Classification 

The DCNN-based roadway crack classification methodology proposed in section 3.4.3 
investigates the DCNN performance from the perspective of heterogeneous image data. It is 
focused on three objectives: i) demonstrating the impacts of image pre-processing, and offering 
suggestions regarding the use of image pre-processing in practical situations; ii) proposing a 
heterogeneous image fusion approach based on hyperspectral imaging to integrate the information 
in the raw intensity and range image data; and, investigating the effects of heterogeneous image 
data by considering four types of  image data: the raw intensity, raw range, filtered range, and 
fused raw image data; and iii) proposing DCNN architectures which represent different means to 
exploit the fused image data, and determining the layout to yield better classification performance 
with data fusion. 

In section 4.4, an experimental study is carried out to train and test the proposed roadway crack 
classification DCNNs. The experimental study consists of two cases: 
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Case I investigates the effect of heterogeneous image data on DCNN performance. A deep 
architecture which takes single-channel input, denoted as Net-A, is designed to process the raw 
intensity, raw range, and filtered range data; Net-B is modified from Net-A to process the fused 
raw image data. Besides, a benchmark architecture is evaluated using the same image data for 
comparison purposes. In total, seven subcases are performed in Case I. Performance metrics 
including Accuracy, Precision, Recall, and F1 are calculated to measure the classification 
performance.  

i) It is clearly observed that architectures trained and tested on raw intensity image result in 
the worst classification performance due to low contrast issue; and, using raw range image instead 
of intensity image yields a significant amount of improvement on the overall classification 
performance;  

ii) Through the comparison between the subcases using raw range image vs. filtered range 
image, it is shown that image pre-processing on the range image improves the performance by a 
noticeable margin; but considering the trade-off from the additional pre-processing procedure, it 
is still preferable to directly use the raw range image for analysis, especially under real-world 
scenarios;  

iii) The use of fused raw image data yields the highest classification performance, because this 
approach takes advantage of the spatial co-registration feature generated from the fusion process. 

It can be concluded from Case I that heterogeneous image fusion is a better alternative to image 
pre-processing, as an effective strategy to address the issues in range images or intensity images 
by cross-domain feature extraction. Through Case I, the first two objectives of this study are 
fulfilled; 

Case II further discusses the better configuration to exploit the fused raw image data. Another deep 
architecture that also takes dual-channel image input is proposed in this study, denoted as Net-C. 
The major difference between Net-B and Net-C is that the former employs a “fuse-extract” pattern 
to directly extract the information from the fused raw image input, while the latter represents a 
“extract-fuse” pattern to first extract information from separate channels and then combine the 
high-level information. Performance metrics demonstrate that the “fuse-extract” scheme is more 
effective and efficient. Through Case II, the third objective of this study is fulfilled. 

Despite the high classification performance of the proposed methodology based on heterogeneous 
image fusion, the resolution of detected cracks is limited, because this methodology is a patch-
based approach. 

5.5 Deep Learning-Based Data Fusion for Crack Segmentation 

The methodology developed in section 3.4.4 explores the feasibility and strategy of heterogeneous 
image data fusion for DCNN-based segmentation. A novel heterogeneous image fusion strategy is 
proposed to address the image-related issues and uncertainties by combining the information in 
raw range and raw intensity image data with spatial correlation. In total, four types of image data 
including the raw range, raw intensity, filtered range, and fused raw image data are considered in 
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this study. And, three encoder-decoder networks, namely, Net-1, 2, and 3, are developed to analyze 
these different types of image data.  

Case I of the experimental study focuses on demonstrating the impacts from heterogeneous image 
data. Several observations and conclusions are briefly summarized as follows: 

i) Among the four types of image data used for DCNN training and testing, the fused raw 
image data leads to the most accurate and robust segmentation performance. The advantage of 
exploiting the spatial co-registration feature in the fused raw image data to reduce uncertainty is 
demonstrated; 

ii) Between the two DCNNs (Net-2 vs. Net-3) proposed to take fused raw image input, Net-
3, which represents the “extract-fuse” pattern through a two-stream encoder layout, has slightly 
better performance than Net-2 representing the “fuse-extract” pattern; 

iii) For the proposed DCNNs, image pre-processing on the raw range image is not necessary, 
because the performance metrics are not significantly improved upon applying image pre-
processing. Also, the robustness of the proposed DCNNs against image-related issues existing in 
the raw range image data such as surface variations and grooved patterns is demonstrated; 

iv) Through a series of comparisons, it is shown that the proposed DCNNs have the same level 
or higher segmentation performance than the two benchmarks, namely the VGG16-FCN and 
CrackNet II. 

In Case II, the segmentation performance by the trained DCNNs is further demonstrated on a 
concrete roadway surface, which suffers from multiple image-related issues including surface 
variations and grooved patterns in the range image, and low intensity contrast in the intensity image. 
While other DCNNs expose issues such as false detections due to grooved patterns in the range 
image or low contrast in the intensity image, the proposed DCNNs with fused raw image input are 
robust against such image disturbances through cross-domain feature correlation, leading to the 
highest segmentation accuracy. 

Through this study, it is suggested that heterogeneous data fusion be used as an effective strategy 
for DCNN-based roadway crack segmentation, which introduces robustness against image 
disturbances. 

5.6 Concluding Remarks 

This technical report is focused on developing an image-based condition assessment framework 
for civil infrastructures by leveraging advanced sensing and imaging technologies. Four research 
topics, as introduced in section 1.3, form a comprehensive and self-contained investigation and 
exploration on image-based crack detection. The proposed methodologies evolve from non-
learning-based to learning-based, resulting in wider applicability and less subjectivity in cracking 
assessment. Meanwhile, from the perspective of image data, thorough investigations are performed 
through a series of comparative studies to determine the optimal strategy to exploit the image data 
as the fused raw image to reduce uncertainty, offering knowledge and insights to future similar 
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applications. Regarding the detection resolution, research efforts are made to improve the 
resolution of the proposed methodologies from patch-level to pixel-level by developing more 
advanced DCNN architectures, thus leading to more accurate detection performance. Overall, all 
the challenges as described in section 1.2 are systematically investigated and properly addressed 
through this technical report. 

Future research work includes: i) developing efficient methodologies to extract crack features such 
as area and width; ii) developing crack detection frameworks for asphalt pavements by leveraging 
the proposed DCNN-based methodologies; iii) developing robust DCNN-based crack 
segmentation methodologies that can distinguish cracks from other non-crack patterns including 
joints, shoulder drop-offs, and pavement edges. 
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